\(1 = \frac{ 78 }{ 78 }\) | \(2 = \sqrt{88 - 7} - 7 \) | \(3 = \sqrt{87 - 78 }\) | \(4 = 7 - \sqrt{\sqrt{88 - 7 }}\) |
\(5 = 8 - \sqrt{\frac{ 7 }{ 7 } + 8 }\) | \(6 = \sqrt{87 - 78 }!\) | \(7 = 8 - 8^{7 - 7 }\) | \(8 = ( 7 - 7 ) \cdot 8 + 8 \) |
\(9 = 87 - 78 \) | \(10 = \frac{ 78 - 8 }{ 7 }\) | \(11 = 88 - 77 \) | \(12 = 7 - \sqrt{\sqrt{8 + 8}} + 7 \) |
\(13 = 77 - 8 \cdot 8 \) | \(14 = 7 + 7 - 8 + 8 \) | \(15 = 8 - \frac{ 7 }{ 7 } + 8 \) | \(16 = \sqrt{88 - 7} + 7 \) |
\(17 = \frac{ 7 }{ 7 } + 8 + 8 \) | \(18 = \sqrt{8 + 8} + 7 + 7 \) | \(19 = ?\) | \(20 = \sqrt{7 \cdot 7 \cdot 8 + 8 }\) |
\(21 = \sqrt{\sqrt{88 - 7}} \cdot 7 \) | \(22 = 78 - 7 \cdot 8 \) | \(23 = \sqrt{7 \cdot 7} + 8 + 8 \) | \(24 = \sqrt{\frac{ 7 }{ 7 } + 8} \cdot 8 \) |
\(25 = \frac{ 7 }{ 7 } + \sqrt{8 + 8 }!\) | \(26 = ?\) | \(27 = ?\) | \(28 = \sqrt{( 8 + 8 ) \cdot 7 \cdot 7 }\) |
\(29 = 78 - \sqrt{\sqrt{7^{8 }}}\) | \(30 = 7 + 7 + 8 + 8 \) | \(31 = 87 - 7 \cdot 8 \) | \(32 = \frac{ 8! }{ 7! + 7! } \cdot 8 \) |
\(33 = 7 \cdot 7 - 8 - 8 \) | \(34 = \sqrt{\sqrt{7^{8}}} - 7 - 8 \) | \(35 = \sqrt{8 + 8} \cdot 7 + 7 \) | \(36 = \sqrt{\sqrt{( 7 + 7 - 8 )^{8 }}}\) |
\(37 = ?\) | \(38 = 87 - \sqrt{\sqrt{7^{8 }}}\) | \(39 = 88 - 7 \cdot 7 \) | \(40 = ?\) |
\(41 = 7 \cdot 8 - 7 - 8 \) | \(42 = ( 7 - \frac{ 8 }{ 8 } ) \cdot 7 \) | \(43 = ?\) | \(44 = ?\) |
\(45 = \frac{ 7! }{ ( 8 + 8 ) \cdot 7 }\) | \(46 = ?\) | \(47 = 7 \cdot 7 - \sqrt{\sqrt{8 + 8 }}\) | \(48 = ( 7 + 7 - 8 ) \cdot 8 \) |
\(49 = 7 \cdot 7 - 8 + 8 \) | \(50 = 8 \cdot 8 - 7 - 7 \) | \(51 = 7 \cdot 7 + \sqrt{\sqrt{8 + 8 }}\) | \(52 = ?\) |
\(53 = 77 - \sqrt{8 + 8 }!\) | \(54 = ?\) | \(55 = 7 \cdot 8 + 7 - 8 \) | \(56 = ( 8 - \frac{ 7 }{ 7 } ) \cdot 8 \) |
\(57 = 7 \cdot 8 - 7 + 8 \) | \(58 = ?\) | \(59 = ?\) | \(60 = ?\) |
\(61 = 77 - 8 - 8 \) | \(62 = ?\) | \(63 = 78 - 7 - 8 \) | \(64 = ( 7 - 7 + 8 ) \cdot 8 \) |
\(65 = 7 \cdot 7 + 8 + 8 \) | \(66 = ?\) | \(67 = ?\) | \(68 = ?\) |
\(69 = 77 - \sqrt{8 \cdot 8 }\) | \(70 = 78 - \frac{ 8! }{ 7 ! }\) | \(71 = 7 \cdot 8 + 7 + 8 \) | \(72 = 87 - 7 - 8 \) |
\(73 = 77 - \sqrt{8 + 8 }\) | \(74 = 88 - 7 - 7 \) | \(75 = 77 - \sqrt{\sqrt{8 + 8 }}\) | \(76 = 77 - \frac{ 8 }{ 8 }\) |
\(77 = 77 - 8 + 8 \) | \(78 = \sqrt{78 \cdot 78 }\) | \(79 = 78 - 7 + 8 \) | \(80 = \sqrt{\sqrt{\sqrt{( 87 - 7 )^{8 }}}}\) |
\(81 = \sqrt{8 + 8} + 77 \) | \(82 = \frac{ \frac{ 7! }{ 7 } }{ 8 } - 8 \) | \(83 = ?\) | \(84 = ?\) |
\(85 = \sqrt{8 \cdot 8} + 77 \) | \(86 = 87 + 7 - 8 \) | \(87 = \sqrt{87 \cdot 87 }\) | \(88 = 87 - 7 + 8 \) |
\(89 = \frac{ 7 }{ 7 } + 88 \) | \(90 = \frac{ ( 7 + 7 - 8 )! }{ 8 }\) | \(91 = \frac{ \frac{ 7! }{ 7 } + 8 }{ 8 }\) | \(92 = ?\) |
\(93 = 77 + 8 + 8 \) | \(94 = \sqrt{\sqrt{\sqrt{( 87 + 7 )^{8 }}}}\) | \(95 = \sqrt{7 \cdot 7} + 88 \) | \(96 = ?\) |
\(97 = ( 7 + 8 ) \cdot 7 - 8 \) | \(98 = \frac{ \frac{ 7! }{ 7 } }{ 8 } + 8 \) | \(99 = ?\) | \(100 = ?\) |