\(1 = 79^{7 - 7 }\) | \(2 = 79 - 77 \) | \(3 = 9 - ( 7 - \frac{ 7 }{ 7 } )\) | \(4 = 7^{7 - 7} + \sqrt{9 }\) |
\(5 = \frac{ 77 }{ 7 } - \sqrt{9 }!\) | \(6 = 7 - 9^{7 - 7 }\) | \(7 = 9 - \frac{ 7 + 7 }{ 7 }\) | \(8 = \frac{ 77 }{ 7 } - \sqrt{9 }\) |
\(9 = ( 7 - 7 ) \cdot 7 + 9 \) | \(10 = 7^{7 - 7} + 9 \) | \(11 = \frac{ 7 + 7 }{ 7 } + 9 \) | \(12 = 7 + 7 + 7 - 9 \) |
\(13 = 7 - 7 + 7 + \sqrt{9 }!\) | \(14 = 77 - 7 \cdot 9 \) | \(15 = 7 - \frac{ 7 }{ 7 } + 9 \) | \(16 = 7 - 7 + 7 + 9 \) |
\(17 = \frac{ 7 }{ 7 } + 7 + 9 \) | \(18 = \frac{ 7 + 7 }{ 7 } \cdot 9 \) | \(19 = ?\) | \(20 = 97 - 77 \) |
\(21 = ( 9 - 7 ) \cdot 7 + 7 \) | \(22 = \frac{ 7 }{ 7 } + 7 \cdot \sqrt{9 }\) | \(23 = \sqrt{7 \cdot 7} + 7 + 9 \) | \(24 = ( \frac{ 7 }{ 7 } + 7 ) \cdot \sqrt{9 }\) |
\(25 = \frac{ 7 }{ 7 } + ( 7 - \sqrt{9 } )!\) | \(26 = ?\) | \(27 = \sqrt{\sqrt{9}^{7 - \frac{ 7 }{ 7 }}}\) | \(28 = \frac{ 77 + 7 }{ \sqrt{9 } }\) |
\(29 = \frac{ 9! }{ 7! + 7! } - 7 \) | \(30 = 79 - 7 \cdot 7 \) | \(31 = ( \frac{ 7 }{ 7 } + \sqrt{9} )! + 7 \) | \(32 = ?\) |
\(33 = \frac{ 77 }{ 7 } \cdot \sqrt{9 }\) | \(34 = \sqrt{\frac{ 7! }{ 7 } + 9} + 7 \) | \(35 = ( 7 + 7 - 9 ) \cdot 7 \) | \(36 = \sqrt{9}!^{\frac{ 7 + 7 }{ 7 }}\) |
\(37 = ?\) | \(38 = ( 7 - \sqrt{9} )! + 7 + 7 \) | \(39 = 7 \cdot 7 - 7 - \sqrt{9 }\) | \(40 = \sqrt{7 \cdot 7} \cdot 7 - 9 \) |
\(41 = 7 \cdot \sqrt{9}! - \frac{ 7 }{ 7 }\) | \(42 = 7^{9 - 7} - 7 \) | \(43 = \frac{ 7 }{ 7 } + 7 \cdot \sqrt{9 }!\) | \(44 = ?\) |
\(45 = 7 \cdot 7 - 7 + \sqrt{9 }\) | \(46 = \sqrt{7 \cdot 7} \cdot 7 - \sqrt{9 }\) | \(47 = 7 \cdot 7 + 7 - 9 \) | \(48 = 97 - 7 \cdot 7 \) |
\(49 = 7 \cdot 9 - 7 - 7 \) | \(50 = \frac{ 7^{\sqrt{9}} + 7 }{ 7 }\) | \(51 = 7 \cdot 7 - 7 + 9 \) | \(52 = \sqrt{7 \cdot 7} \cdot 7 + \sqrt{9 }\) |
\(53 = 77 - ( 7 - \sqrt{9 } )!\) | \(54 = ( 7 - \frac{ 7 }{ 7 } ) \cdot 9 \) | \(55 = \sqrt{7 \cdot 7} \cdot 7 + \sqrt{9 }!\) | \(56 = 77 - 7 \cdot \sqrt{9 }\) |
\(57 = 777 - \sqrt{9 }!!\) | \(58 = \sqrt{7 \cdot 7} \cdot 7 + 9 \) | \(59 = 7 \cdot 7 + 7 + \sqrt{9 }\) | \(60 = \frac{ \frac{ 7! }{ 7 + 7 } }{ \sqrt{9 }! }\) |
\(61 = 77 - 7 - 9 \) | \(62 = 7 \cdot 9 - \frac{ 7 }{ 7 }\) | \(63 = ( 7 - 7 + 7 ) \cdot 9 \) | \(64 = \frac{ 7 }{ 7 } + 7 \cdot 9 \) |
\(65 = 79 - 7 - 7 \) | \(66 = \frac{ 77 }{ 7 } \cdot \sqrt{9 }!\) | \(67 = 77 - 7 - \sqrt{9 }\) | \(68 = \sqrt{\frac{ 7 }{ 7 } + 7!} - \sqrt{9 }\) |
\(69 = ?\) | \(70 = \frac{ 7! }{ 79 - 7 }\) | \(71 = \sqrt{9^{7 - 7} + 7 !}\) | \(72 = 79 - \sqrt{7 \cdot 7 }\) |
\(73 = 77 - 7 + \sqrt{9 }\) | \(74 = \sqrt{\frac{ 7 }{ 7 } + 7!} + \sqrt{9 }\) | \(75 = 77 + 7 - 9 \) | \(76 = 77 - 7 + \sqrt{9 }!\) |
\(77 = \sqrt{77^{9 - 7 }}\) | \(78 = 79 - \frac{ 7 }{ 7 }\) | \(79 = 77 - 7 + 9 \) | \(80 = \frac{ 7 }{ 7 } + 79 \) |
\(81 = 77 + 7 - \sqrt{9 }\) | \(82 = ?\) | \(83 = 97 - 7 - 7 \) | \(84 = ( 7 + \sqrt{9}! ) \cdot 7 - 7 \) |
\(85 = ?\) | \(86 = \sqrt{7 \cdot 7} + 79 \) | \(87 = 77 + 7 + \sqrt{9 }\) | \(88 = ?\) |
\(89 = ( 7 + 7 ) \cdot 7 - 9 \) | \(90 = 97 - \sqrt{7 \cdot 7 }\) | \(91 = ( 7 + 7 ) \cdot \sqrt{9}! + 7 \) | \(92 = ( 7 + 7 ) \cdot 7 - \sqrt{9 }!\) |
\(93 = 77 + 7 + 9 \) | \(94 = ?\) | \(95 = ( 7 + 7 ) \cdot 7 - \sqrt{9 }\) | \(96 = 97 - \frac{ 7 }{ 7 }\) |
\(97 = 97 - 7 + 7 \) | \(98 = \frac{ 7 }{ 7 } + 97 \) | \(99 = \frac{ 77 }{ 7 } \cdot 9 \) | \(100 = ?\) |