\(1 = 57^{7 - 7 }\) | \(2 = 77 - 75 \) | \(3 = 7 - ( 5 - \frac{ 7 }{ 7 } )\) | \(4 = \sqrt{\frac{ 77 }{ 7 } + 5 }\) |
\(5 = ( 7 - 7 ) \cdot 7 + 5 \) | \(6 = \frac{ 77 }{ 7 } - 5 \) | \(7 = ( 7 - 7 ) \cdot 5 + 7 \) | \(8 = 57 - 7 \cdot 7 \) |
\(9 = \sqrt{5 - \frac{ 7 }{ 7 }} + 7 \) | \(10 = \frac{ ( 7 + 7 ) \cdot 5 }{ 7 }\) | \(11 = 5 - \frac{ 7 }{ 7 } + 7 \) | \(12 = 7 - ( 7 - 5 ) + 7 \) |
\(13 = \frac{ 7 }{ 7 } + 5 + 7 \) | \(14 = \frac{ 77 - 7 }{ 5 }\) | \(15 = \sqrt{57 + 7} + 7 \) | \(16 = \frac{ 77 }{ 7 } + 5 \) |
\(17 = ( 5 - \frac{ 7 }{ 7 } )! - 7 \) | \(18 = \sqrt{\frac{ 7 }{ 7 } + 5!} + 7 \) | \(19 = \sqrt{7 \cdot 7} + 5 + 7 \) | \(20 = 77 - 57 \) |
\(21 = ( 7 - 5 ) \cdot 7 + 7 \) | \(22 = 5! - ( 7 + 7 ) \cdot 7 \) | \(23 = ?\) | \(24 = \sqrt{\frac{ 77 }{ 7 } + 5 }!\) |
\(25 = 5^{\frac{ 7 + 7 }{ 7 }}\) | \(26 = 75 - 7 \cdot 7 \) | \(27 = ?\) | \(28 = ( 5 - \frac{ 7 }{ 7 } ) \cdot 7 \) |
\(29 = \sqrt{5! \cdot 7 + \frac{ 7 }{ 7 }}\) | \(30 = ( 7 - \frac{ 7 }{ 7 } ) \cdot 5 \) | \(31 = ( 5 - \frac{ 7 }{ 7 } )! + 7 \) | \(32 = ( \frac{ 7 + 7 }{ 7 } )^{5 }\) |
\(33 = ?\) | \(34 = 5 \cdot 7 - \frac{ 7 }{ 7 }\) | \(35 = ( 7 - ( 7 - 5 ) ) \cdot 7 \) | \(36 = 5! - 77 - 7 \) |
\(37 = 7 \cdot 7 - 5 - 7 \) | \(38 = ?\) | \(39 = ?\) | \(40 = ( \frac{ 7 }{ 7 } + 7 ) \cdot 5 \) |
\(41 = \sqrt{\frac{ 7^{5} - 7! }{ 7 }}\) | \(42 = 77 - 5 \cdot 7 \) | \(43 = 57 - 7 - 7 \) | \(44 = \sqrt{7 \cdot 7} \cdot 7 - 5 \) |
\(45 = ?\) | \(46 = ?\) | \(47 = 7 \cdot 7 + 5 - 7 \) | \(48 = \frac{ \frac{ 7! }{ 7 } + 7! }{ 5 ! }\) |
\(49 = 5 \cdot 7 + 7 + 7 \) | \(50 = 57 - \sqrt{7 \cdot 7 }\) | \(51 = 7 \cdot 7 - 5 + 7 \) | \(52 = ?\) |
\(53 = \sqrt{\frac{ 5 \cdot 7! }{ 7 }} - 7 \) | \(54 = \sqrt{7 \cdot 7} \cdot 7 + 5 \) | \(55 = \frac{ 77 \cdot 5 }{ 7 }\) | \(56 = 57 - \frac{ 7 }{ 7 }\) |
\(57 = 57 - 7 + 7 \) | \(58 = \frac{ 7 }{ 7 } + 57 \) | \(59 = ?\) | \(60 = \frac{ 7! }{ ( 5 + 7 ) \cdot 7 }\) |
\(61 = 75 - 7 - 7 \) | \(62 = ?\) | \(63 = ( 7 - 5 + 7 ) \cdot 7 \) | \(64 = \sqrt{7 \cdot 7} + 57 \) |
\(65 = 77 - 5 - 7 \) | \(66 = \sqrt{\frac{ 7 }{ 7 } + 7!} - 5 \) | \(67 = \sqrt{\frac{ 5 \cdot 7! }{ 7 }} + 7 \) | \(68 = 75 - \sqrt{7 \cdot 7 }\) |
\(69 = ?\) | \(70 = \frac{ 7! }{ 77 - 5 }\) | \(71 = 57 + 7 + 7 \) | \(72 = \frac{ 7! }{ ( 7 + 7 ) \cdot 5 }\) |
\(73 = ?\) | \(74 = 75 - \frac{ 7 }{ 7 }\) | \(75 = 75 - 7 + 7 \) | \(76 = \frac{ 7 }{ 7 } + 75 \) |
\(77 = \sqrt{77^{7 - 5 }}\) | \(78 = 5! - 7 \cdot 7 + 7 \) | \(79 = 77 - 5 + 7 \) | \(80 = ?\) |
\(81 = ?\) | \(82 = \sqrt{7 \cdot 7} + 75 \) | \(83 = ?\) | \(84 = 5 \cdot 7 + 7 \cdot 7 \) |
\(85 = ?\) | \(86 = ?\) | \(87 = ?\) | \(88 = ?\) |
\(89 = 75 + 7 + 7 \) | \(90 = ?\) | \(91 = ( 5 + 7 ) \cdot 7 + 7 \) | \(92 = ?\) |
\(93 = ( 7 + 7 ) \cdot 7 - 5 \) | \(94 = ?\) | \(95 = ?\) | \(96 = ?\) |
\(97 = ?\) | \(98 = ( 7 - 5 ) \cdot 7 \cdot 7 \) | \(99 = 5! - 7 - 7 - 7 \) | \(100 = ?\) |