\(1 = 37^{7 - 7 }\) | \(2 = \sqrt{77 - 73 }\) | \(3 = 7 - ( \frac{ 7 }{ 7 } + 3 )\) | \(4 = 77 - 73 \) |
\(5 = \frac{ 77 }{ 7 } - 3 !\) | \(6 = \sqrt{37 - \frac{ 7 }{ 7 }}\) | \(7 = ( 7 - 7 ) \cdot 3 + 7 \) | \(8 = \frac{ 77 }{ 7 } - 3 \) |
\(9 = \sqrt{77 - 3 + 7 }\) | \(10 = 7 - ( 7 - 3 ) + 7 \) | \(11 = \frac{ 7 }{ 7 } + 3 + 7 \) | \(12 = 7 \cdot 7 - 37 \) |
\(13 = ( 7 - ( 7 - 3 ) )! + 7 \) | \(14 = \frac{ 77 }{ 7 } + 3 \) | \(15 = 7 - 3! + 7 + 7 \) | \(16 = \sqrt{7 - 3} + 7 + 7 \) |
\(17 = \frac{ 77 }{ 7 } + 3 !\) | \(18 = 7 - 3 + 7 + 7 \) | \(19 = ?\) | \(20 = 3 \cdot 7 - \frac{ 7 }{ 7 }\) |
\(21 = ( 7 - ( 7 - 3 ) ) \cdot 7 \) | \(22 = 3 \cdot 7 + \frac{ 7 }{ 7 }\) | \(23 = 37 - 7 - 7 \) | \(24 = ( 77 - 73 )!\) |
\(25 = ( 7 - 3 )! + \frac{ 7 }{ 7 }\) | \(26 = ?\) | \(27 = 3! + 7 + 7 + 7 \) | \(28 = \frac{ 77 + 7 }{ 3 }\) |
\(29 = \sqrt{\frac{ 7! }{ 3! } + \frac{ 7 }{ 7 }}\) | \(30 = 37 - \sqrt{7 \cdot 7 }\) | \(31 = ( \frac{ 7 }{ 7 } + 3 )! + 7 \) | \(32 = ?\) |
\(33 = \frac{ 77 \cdot 3 }{ 7 }\) | \(34 = ?\) | \(35 = 77 - 3! \cdot 7 \) | \(36 = 37 - \frac{ 7 }{ 7 }\) |
\(37 = 37 - 7 + 7 \) | \(38 = \frac{ 7 }{ 7 } + 37 \) | \(39 = 7 \cdot 7 - 3 - 7 \) | \(40 = 77 - 37 \) |
\(41 = 3! \cdot 7 - \frac{ 7 }{ 7 }\) | \(42 = \frac{ 7^{3} }{ 7 } - 7 \) | \(43 = 3! \cdot 7 + \frac{ 7 }{ 7 }\) | \(44 = \sqrt{7 \cdot 7} + 37 \) |
\(45 = 7 \cdot 7 + 3 - 7 \) | \(46 = \sqrt{7 \cdot 7} \cdot 7 - 3 \) | \(47 = 7 \cdot 7 - \sqrt{7 - 3 }\) | \(48 = \frac{ 7^{3} - 7 }{ 7 }\) |
\(49 = 7^{3 - \frac{ 7 }{ 7 }}\) | \(50 = \frac{ 7^{3} + 7 }{ 7 }\) | \(51 = 37 + 7 + 7 \) | \(52 = \sqrt{7 \cdot 7} \cdot 7 + 3 \) |
\(53 = 77 - ( 7 - 3 )!\) | \(54 = ?\) | \(55 = \sqrt{7 \cdot 7} \cdot 7 + 3 !\) | \(56 = 77 - 3 \cdot 7 \) |
\(57 = 777 - 3 !!\) | \(58 = ?\) | \(59 = 73 - 7 - 7 \) | \(60 = \frac{ 7! }{ ( 7 + 7 ) \cdot 3 ! }\) |
\(61 = ?\) | \(62 = 7 \cdot 7 + 3! + 7 \) | \(63 = \frac{ 7! }{ 73 + 7 }\) | \(64 = 77 - 3! - 7 \) |
\(65 = \sqrt{\frac{ 7 }{ 7 } + 7!} - 3 !\) | \(66 = 73 - \sqrt{7 \cdot 7 }\) | \(67 = 77 - 3 - 7 \) | \(68 = \sqrt{\frac{ 7 }{ 7 } + 7!} - 3 \) |
\(69 = ?\) | \(70 = 3 \cdot 7 + 7 \cdot 7 \) | \(71 = \sqrt{3^{7 - 7} + 7 !}\) | \(72 = 73 - \frac{ 7 }{ 7 }\) |
\(73 = 73 - 7 + 7 \) | \(74 = \frac{ 7 }{ 7 } + 73 \) | \(75 = 77 - \sqrt{7 - 3 }\) | \(76 = 77 + 3! - 7 \) |
\(77 = ( 7 - 3! ) \cdot 77 \) | \(78 = 77 - 3! + 7 \) | \(79 = \sqrt{7 - 3} + 77 \) | \(80 = \sqrt{7 \cdot 7} + 73 \) |
\(81 = 77 - 3 + 7 \) | \(82 = ?\) | \(83 = ?\) | \(84 = ( 3! + 7 ) \cdot 7 - 7 \) |
\(85 = ?\) | \(86 = 7 \cdot 7 + 37 \) | \(87 = 73 + 7 + 7 \) | \(88 = ?\) |
\(89 = ?\) | \(90 = 77 + 3! + 7 \) | \(91 = ( 7 + 7 ) \cdot 3! + 7 \) | \(92 = ( 7 + 7 ) \cdot 7 - 3 !\) |
\(93 = ?\) | \(94 = ?\) | \(95 = ( 7 + 7 ) \cdot 7 - 3 \) | \(96 = ?\) |
\(97 = ?\) | \(98 = 3 \cdot 7 + 77 \) | \(99 = ?\) | \(100 = ?\) |