\(1 = 28^{8 - 8 }\) | \(2 = 8 - \sqrt{28 + 8 }\) | \(3 = \sqrt{\frac{ 88 }{ 8 } - 2 }\) | \(4 = \frac{ 8 }{ \frac{ 8 }{ \frac{ 8 }{ 2 } } }\) |
\(5 = 8 - ( \frac{ 8 }{ 8 } + 2 )\) | \(6 = 88 - 82 \) | \(7 = \frac{ 28 }{ \sqrt{8 + 8 } }\) | \(8 = ( 8 - 8 ) \cdot 2 + 8 \) |
\(9 = \frac{ 88 }{ 8 } - 2 \) | \(10 = \frac{ 8 }{ \frac{ 8 }{ 2 } } + 8 \) | \(11 = \frac{ \sqrt{88^{2}} }{ 8 }\) | \(12 = 28 - 8 - 8 \) |
\(13 = \frac{ 88 }{ 8 } + 2 \) | \(14 = \sqrt{28 + 8} + 8 \) | \(15 = 2 \cdot 8 - \frac{ 8 }{ 8 }\) | \(16 = \frac{ 8 }{ \frac{ 8 }{ 2 } } \cdot 8 \) |
\(17 = 2 \cdot 8 + \frac{ 8 }{ 8 }\) | \(18 = 82 - 8 \cdot 8 \) | \(19 = ?\) | \(20 = 28 - \sqrt{8 \cdot 8 }\) |
\(21 = ?\) | \(22 = \frac{ 88 \cdot 2 }{ 8 }\) | \(23 = ( \frac{ 8 }{ 2 } )! - \frac{ 8 }{ 8 }\) | \(24 = 88 - 8^{2 }\) |
\(25 = ( \frac{ 8 }{ 2 } )! + \frac{ 8 }{ 8 }\) | \(26 = 2 + 8 + 8 + 8 \) | \(27 = 28 - \frac{ 8 }{ 8 }\) | \(28 = 28 - 8 + 8 \) |
\(29 = \frac{ 8 }{ 8 } + 28 \) | \(30 = \sqrt{\sqrt{8 + 8}} + 28 \) | \(31 = \frac{ 2^{8} - 8 }{ 8 }\) | \(32 = \sqrt{8 + 8} + 28 \) |
\(33 = \frac{ 2^{8} + 8 }{ 8 }\) | \(34 = \sqrt{8 + 8} \cdot 8 + 2 \) | \(35 = ?\) | \(36 = \frac{ 288 }{ 8 }\) |
\(37 = ?\) | \(38 = ?\) | \(39 = ?\) | \(40 = \frac{ 88 - 8 }{ 2 }\) |
\(41 = \frac{ 82 }{ \sqrt{\sqrt{8 + 8 }} }\) | \(42 = ?\) | \(43 = ?\) | \(44 = 28 + 8 + 8 \) |
\(45 = \frac{ ( 8 - 2 )! }{ 8 + 8 }\) | \(46 = ?\) | \(47 = ?\) | \(48 = \sqrt{288 \cdot 8 }\) |
\(49 = ( 8 - \frac{ 8 }{ 8 } )^{2 }\) | \(50 = ?\) | \(51 = ?\) | \(52 = \frac{ 88 }{ 2 } + 8 \) |
\(53 = ?\) | \(54 = 8 \cdot 8 - 2 - 8 \) | \(55 = ?\) | \(56 = ( 8 - 2 ) \cdot 8 + 8 \) |
\(57 = ?\) | \(58 = 8 \cdot 8 + 2 - 8 \) | \(59 = ?\) | \(60 = 88 - 28 \) |
\(61 = ?\) | \(62 = \sqrt{8 \cdot 8} \cdot 8 - 2 \) | \(63 = 8^{2} - \frac{ 8 }{ 8 }\) | \(64 = 88 - ( \frac{ 8 }{ 2 } )!\) |
\(65 = 8^{2} + \frac{ 8 }{ 8 }\) | \(66 = 82 - 8 - 8 \) | \(67 = ?\) | \(68 = \frac{ 8 }{ 2 } + 8 \cdot 8 \) |
\(69 = \sqrt{\frac{ 8 + 8! }{ 8 }} - 2 \) | \(70 = 8 \cdot 8 - 2 + 8 \) | \(71 = \sqrt{\frac{ 8! - 8 }{ 8 } + 2 }\) | \(72 = 88 - 2 \cdot 8 \) |
\(73 = \sqrt{\frac{ 8 + 8! }{ 8 }} + 2 \) | \(74 = 82 - \sqrt{8 \cdot 8 }\) | \(75 = ?\) | \(76 = ?\) |
\(77 = ?\) | \(78 = 88 - 2 - 8 \) | \(79 = ?\) | \(80 = \sqrt{88^{2}} - 8 \) |
\(81 = 82 - \frac{ 8 }{ 8 }\) | \(82 = 82 - 8 + 8 \) | \(83 = \frac{ 8 }{ 8 } + 82 \) | \(84 = \sqrt{882 \cdot 8 }\) |
\(85 = ?\) | \(86 = \sqrt{8 + 8} + 82 \) | \(87 = ?\) | \(88 = ( 2 + 8 ) \cdot 8 + 8 \) |
\(89 = \frac{ ( 8 - 2 )! - 8 }{ 8 }\) | \(90 = \sqrt{8 \cdot 8} + 82 \) | \(91 = \frac{ ( 8 - 2 )! + 8 }{ 8 }\) | \(92 = 8 \cdot 8 + 28 \) |
\(93 = ?\) | \(94 = 88 - 2 + 8 \) | \(95 = ?\) | \(96 = \sqrt{88^{2}} + 8 \) |
\(97 = ?\) | \(98 = 82 + 8 + 8 \) | \(99 = ?\) | \(100 = ( \sqrt{\sqrt{8 + 8}} + 8 )^{2 }\) |