2788

\(1 = 27^{8 - 8 }\) \(2 = \sqrt{82 - 78 }\) \(3 = \frac{ ( \frac{ 28 }{ 7 } )! }{ 8 }\) \(4 = 82 - 78 \)
\(5 = 87 - 82 \) \(6 = 8 - \sqrt{\frac{ 28 }{ 7 }}\) \(7 = \sqrt{88 - 7} - 2 \) \(8 = \frac{ 72 - 8 }{ 8 }\)
\(9 = \frac{ 72 }{ \sqrt{8 \cdot 8 } }\) \(10 = \frac{ 72 + 8 }{ 8 }\) \(11 = 27 - 8 - 8 \) \(12 = \frac{ 28 }{ 7 } + 8 \)
\(13 = \sqrt{82 + 87 }\) \(14 = 78 - 8^{2 }\) \(15 = 2 \cdot 8 + 7 - 8 \) \(16 = 88 - 72 \)
\(17 = \frac{ 72 }{ 8 } + 8 \) \(18 = \frac{ 72 }{ \sqrt{8 + 8 } }\) \(19 = 27 - \sqrt{8 \cdot 8 }\) \(20 = \frac{ 8 }{ 2 } \cdot 7 - 8 \)
\(21 = 7 - 2 + 8 + 8 \) \(22 = \sqrt{28 \cdot 7} + 8 \) \(23 = 87 - 8^{2 }\) \(24 = ( 82 - 78 )!\)
\(25 = 2 + 7 + 8 + 8 \) \(26 = 27 - \frac{ 8 }{ 8 }\) \(27 = 27 - 8 + 8 \) \(28 = \frac{ 8 }{ 8 } + 27 \)
\(29 = 28 - 7 + 8 \) \(30 = 2 \cdot 7 + 8 + 8 \) \(31 = \frac{ 78 }{ 2 } - 8 \) \(32 = \frac{ 28 }{ 7 } \cdot 8 \)
\(33 = 7^{2} - 8 - 8 \) \(34 = ( 8 - 2 ) \cdot 7 - 8 \) \(35 = \frac{ 78 - 8 }{ 2 }\) \(36 = \frac{ 8 }{ 2 } \cdot 7 + 8 \)
\(37 = 8 \cdot 8 - 27 \) \(38 = ( 7 + 8 ) \cdot 2 + 8 \) \(39 = 88 - 7^{2 }\) \(40 = 2^{7} - 88 \)
\(41 = ( 8 - 2 ) \cdot 8 - 7 \) \(42 = \sqrt{28 + 8} \cdot 7 \) \(43 = 27 + 8 + 8 \) \(44 = \sqrt{\sqrt{\sqrt{2 + 7}!^{8}}} + 8 \)
\(45 = 7^{2} - \sqrt{8 + 8 }\) \(46 = 7 \cdot 8 - 2 - 8 \) \(47 = \frac{ 78 }{ 2 } + 8 \) \(48 = ( 2 \cdot 7 - 8 ) \cdot 8 \)
\(49 = 7^{2} - 8 + 8 \) \(50 = 78 - 28 \) \(51 = \frac{ 88 }{ 2 } + 7 \) \(52 = 7 \cdot 8 - \frac{ 8 }{ 2 }\)
\(53 = 7^{2} + \sqrt{8 + 8 }\) \(54 = 78 - ( \frac{ 8 }{ 2 } )!\) \(55 = ( 8 - 2 ) \cdot 8 + 7 \) \(56 = 72 - 8 - 8 \)
\(57 = 7^{\sqrt{\frac{ 8 }{ 2 }}} + 8 \) \(58 = \sqrt{8 \cdot 8} \cdot 7 + 2 \) \(59 = 87 - 28 \) \(60 = \frac{ ( 7 + 8 ) \cdot 8 }{ 2 }\)
\(61 = 88 - 27 \) \(62 = 78 - 2 \cdot 8 \) \(63 = 87 - ( \frac{ 8 }{ 2 } )!\) \(64 = 8^{\sqrt{\frac{ 28 }{ 7 }}}\)
\(65 = 7^{2} + 8 + 8 \) \(66 = 7 \cdot 8 + 2 + 8 \) \(67 = 82 - 7 - 8 \) \(68 = 78 - 2 - 8 \)
\(69 = 8 \cdot 8 - 2 + 7 \) \(70 = \frac{ \frac{ 8! }{ 72 } }{ 8 }\) \(71 = 72 - \frac{ 8 }{ 8 }\) \(72 = \frac{ 72 }{ 8 } \cdot 8 \)
\(73 = \frac{ 8 }{ 8 } + 72 \) \(74 = 78 - \frac{ 8 }{ 2 }\) \(75 = \sqrt{\sqrt{\sqrt{( 82 - 7 )^{8 }}}}\) \(76 = \sqrt{8 + 8} + 72 \)
\(77 = 87 - 2 - 8 \) \(78 = ( 2 + 8 ) \cdot 7 + 8 \) \(79 = 88 - 2 - 7 \) \(80 = \sqrt{8 \cdot 8} + 72 \)
\(81 = 82 + 7 - 8 \) \(82 = \frac{ 8 }{ 2 } + 78 \) \(83 = 82 - 7 + 8 \) \(84 = 7 \cdot 8 + 28 \)
\(85 = 87 - \sqrt{\frac{ 8 }{ 2 }}\) \(86 = \sqrt{78^{2}} + 8 \) \(87 = ( 2 + 8 ) \cdot 8 + 7 \) \(88 = 72 + 8 + 8 \)
\(89 = \sqrt{\frac{ 8 }{ 2 }} + 87 \) \(90 = ( 8 - 2 ) \cdot ( 7 + 8 )\) \(91 = \frac{ 728 }{ 8 }\) \(92 = ?\)
\(93 = 87 - 2 + 8 \) \(94 = 2 \cdot 8 + 78 \) \(95 = \sqrt{87^{2}} + 8 \) \(96 = ( 7 \cdot 8 - 8 ) \cdot 2 \)
\(97 = 82 + 7 + 8 \) \(98 = ( 8 - 2 + 8 ) \cdot 7 \) \(99 = ?\) \(100 = \sqrt{\sqrt{( \frac{ 8! }{ 7! } + 2 )^{8 }}}\)