\(1 = ( 8 - 7 )^{27 }\) | \(2 = \frac{ 28 }{ 7 + 7 }\) | \(3 = 7 - \frac{ 28 }{ 7 }\) | \(4 = \frac{ 28 }{ \sqrt{7 \cdot 7 } }\) |
\(5 = 82 - 77 \) | \(6 = 78 - 72 \) | \(7 = \sqrt{77 - 28 }\) | \(8 = \sqrt{78 - 2 \cdot 7 }\) |
\(9 = \sqrt{\frac{ 28 }{ 7 }} + 7 \) | \(10 = \sqrt{\frac{ 72 }{ 8 }} + 7 \) | \(11 = \frac{ 28 }{ 7 } + 7 \) | \(12 = 27 - 7 - 8 \) |
\(13 = 77 - 8^{2 }\) | \(14 = 28 - 7 - 7 \) | \(15 = 87 - 72 \) | \(16 = \frac{ 72 }{ 8 } + 7 \) |
\(17 = ( \frac{ 28 }{ 7 } )! - 7 \) | \(18 = \frac{ 8 }{ 2 } + 7 + 7 \) | \(19 = 27 - \frac{ 8! }{ 7 ! }\) | \(20 = 7 - 2 + 7 + 8 \) |
\(21 = 7 \cdot 7 - 28 \) | \(22 = \sqrt{\sqrt{7^{8}}} - 27 \) | \(23 = \frac{ 2^{7} }{ 8 } + 7 \) | \(24 = ( \frac{ 7 }{ 7 } + 2 ) \cdot 8 \) |
\(25 = \sqrt{2^{7} \cdot 8} - 7 \) | \(26 = 27 + 7 - 8 \) | \(27 = ( 8 - 7 ) \cdot 27 \) | \(28 = 27 - 7 + 8 \) |
\(29 = 7 \cdot 8 - 27 \) | \(30 = 2 \cdot 8 + 7 + 7 \) | \(31 = ( \frac{ 28 }{ 7 } )! + 7 \) | \(32 = \frac{ 78 }{ 2 } - 7 \) |
\(33 = 82 - 7 \cdot 7 \) | \(34 = 7^{2} - 7 - 8 \) | \(35 = \sqrt{7 \cdot 7} + 28 \) | \(36 = ( 7 + 7 ) \cdot 2 + 8 \) |
\(37 = ( 7 + 8 ) \cdot 2 + 7 \) | \(38 = 87 - 7^{2 }\) | \(39 = 7 \cdot 7 - 2 - 8 \) | \(40 = \frac{ 87 - 7 }{ 2 }\) |
\(41 = \frac{ 287 }{ 7 }\) | \(42 = 27 + 7 + 8 \) | \(43 = ( 7 - 2 ) \cdot 7 + 8 \) | \(44 = ( 7 + 7 + 8 ) \cdot 2 \) |
\(45 = 7 \cdot 7 - \frac{ 8 }{ 2 }\) | \(46 = \frac{ 78 }{ 2 } + 7 \) | \(47 = \frac{ 87 + 7 }{ 2 }\) | \(48 = 7^{2} + 7 - 8 \) |
\(49 = 77 - 28 \) | \(50 = 2^{7} - 78 \) | \(51 = 78 - 27 \) | \(52 = \sqrt{2 + 7} + \sqrt{\sqrt{7^{8 }}}\) |
\(53 = 77 - ( \frac{ 8 }{ 2 } )!\) | \(54 = \sqrt{7 \cdot 7} \cdot 8 - 2 \) | \(55 = 7 \cdot 7 - 2 + 8 \) | \(56 = \sqrt{72 - 8} \cdot 7 \) |
\(57 = 72 - 7 - 8 \) | \(58 = \sqrt{7 \cdot 7} \cdot 8 + 2 \) | \(59 = 7 \cdot 7 + 2 + 8 \) | \(60 = 87 - 27 \) |
\(61 = 77 - 2 \cdot 8 \) | \(62 = \frac{ 7! }{ 72 } - 8 \) | \(63 = \frac{ 72 \cdot 7 }{ 8 }\) | \(64 = 78 - 2 \cdot 7 \) |
\(65 = 7 \cdot 8 + 2 + 7 \) | \(66 = ?\) | \(67 = 77 - 2 - 8 \) | \(68 = 82 - 7 - 7 \) |
\(69 = 78 - 2 - 7 \) | \(70 = 2 \cdot 7 + 7 \cdot 8 \) | \(71 = 72 + 7 - 8 \) | \(72 = ( 8 - 7 ) \cdot 72 \) |
\(73 = 72 - 7 + 8 \) | \(74 = \sqrt{\sqrt{2 + 7}^{8}} - 7 \) | \(75 = 77 - \sqrt{\frac{ 8 }{ 2 }}\) | \(76 = \sqrt{\sqrt{7^{8}}} + 27 \) |
\(77 = 7 \cdot 7 + 28 \) | \(78 = 87 - 2 - 7 \) | \(79 = \sqrt{\frac{ 8 }{ 2 }} + 77 \) | \(80 = \frac{ 8! }{ 72 \cdot 7 }\) |
\(81 = \frac{ 8 }{ 2 } + 77 \) | \(82 = 82 - 7 + 7 \) | \(83 = 7 \cdot 8 + 27 \) | \(84 = 87 - \sqrt{2 + 7 }\) |
\(85 = \sqrt{77^{2}} + 8 \) | \(86 = ?\) | \(87 = 72 + 7 + 8 \) | \(88 = \sqrt{2^{7} - 7} \cdot 8 \) |
\(89 = \sqrt{7 \cdot 7} + 82 \) | \(90 = \sqrt{2 + 7} + 87 \) | \(91 = ( 7 - 2 + 8 ) \cdot 7 \) | \(92 = 2 \cdot 7 + 78 \) |
\(93 = 2 \cdot 8 + 77 \) | \(94 = \sqrt{87^{2}} + 7 \) | \(95 = ?\) | \(96 = 82 + 7 + 7 \) |
\(97 = \frac{ \sqrt{2 + 7}!! }{ 8 } + 7 \) | \(98 = \sqrt{28 \cdot 7} \cdot 7 \) | \(99 = ?\) | \(100 = \sqrt{\sqrt{( \sqrt{2 + 7} + 7 )^{8 }}}\) |