\(1 = 27^{7 - 7 }\) | \(2 = ( 7 - 7 ) \cdot 7 + 2 \) | \(3 = \sqrt{\frac{ 77 }{ 7 } - 2 }\) | \(4 = 7 - ( \frac{ 7 }{ 7 } + 2 )\) |
\(5 = 77 - 72 \) | \(6 = 7 - 2^{7 - 7 }\) | \(7 = ( 7 - 7 ) \cdot 2 + 7 \) | \(8 = 2^{7 - 7} + 7 \) |
\(9 = \frac{ 77 }{ 7 } - 2 \) | \(10 = \frac{ \frac{ 7! }{ 72 } }{ 7 }\) | \(11 = \sqrt{7 \cdot 7 + 72 }\) | \(12 = ( 7 - \frac{ 7 }{ 7 } ) \cdot 2 \) |
\(13 = 27 - 7 - 7 \) | \(14 = \sqrt{27 \cdot 7 + 7 }\) | \(15 = 2 \cdot 7 + \frac{ 7 }{ 7 }\) | \(16 = ( \frac{ 7 }{ 7 } + 7 ) \cdot 2 \) |
\(17 = \sqrt{2 + 7} + 7 + 7 \) | \(18 = \sqrt{2^{7} - 7} + 7 \) | \(19 = 7 - 2 + 7 + 7 \) | \(20 = 27 - \sqrt{7 \cdot 7 }\) |
\(21 = ( \frac{ 7 }{ 7 } + 2 ) \cdot 7 \) | \(22 = 7 \cdot 7 - 27 \) | \(23 = 72 - 7 \cdot 7 \) | \(24 = ( 7 - ( \frac{ 7 }{ 7 } + 2 ) )!\) |
\(25 = ?\) | \(26 = 27 - \frac{ 7 }{ 7 }\) | \(27 = 27 - 7 + 7 \) | \(28 = \frac{ 7 }{ 7 } + 27 \) |
\(29 = ?\) | \(30 = ?\) | \(31 = ( 7 - \sqrt{2 + 7} )! + 7 \) | \(32 = ?\) |
\(33 = ?\) | \(34 = \sqrt{7 \cdot 7} + 27 \) | \(35 = \frac{ 77 - 7 }{ 2 }\) | \(36 = ( 7 - \frac{ 7 }{ 7 } )^{2 }\) |
\(37 = ?\) | \(38 = ?\) | \(39 = ?\) | \(40 = 7 \cdot 7 - 2 - 7 \) |
\(41 = 27 + 7 + 7 \) | \(42 = \frac{ 77 + 7 }{ 2 }\) | \(43 = ( 7 - 2 )! - 77 \) | \(44 = 7 \cdot 7 + 2 - 7 \) |
\(45 = ?\) | \(46 = 7 \cdot 7 - \sqrt{2 + 7 }\) | \(47 = \sqrt{7 \cdot 7} \cdot 7 - 2 \) | \(48 = 7^{2} - \frac{ 7 }{ 7 }\) |
\(49 = 7^{7 - ( 7 - 2 )}\) | \(50 = 77 - 27 \) | \(51 = 2^{7} - 77 \) | \(52 = \sqrt{2 + 7} + 7 \cdot 7 \) |
\(53 = ?\) | \(54 = 7 \cdot 7 - 2 + 7 \) | \(55 = \sqrt{2 + 7}! + 7 \cdot 7 \) | \(56 = ( 2 + 7 ) \cdot 7 - 7 \) |
\(57 = ?\) | \(58 = 72 - 7 - 7 \) | \(59 = ?\) | \(60 = \sqrt{\frac{ ( 7 - 2 ) \cdot 7! }{ 7 }}\) |
\(61 = ?\) | \(62 = ?\) | \(63 = 77 - 2 \cdot 7 \) | \(64 = 2^{7 - \frac{ 7 }{ 7 }}\) |
\(65 = 72 - \sqrt{7 \cdot 7 }\) | \(66 = ?\) | \(67 = ?\) | \(68 = 77 - 2 - 7 \) |
\(69 = \sqrt{\frac{ 7 }{ 7 } + 7!} - 2 \) | \(70 = \sqrt{77^{2}} - 7 \) | \(71 = 72 - \frac{ 7 }{ 7 }\) | \(72 = 72 - 7 + 7 \) |
\(73 = \frac{ 7 }{ 7 } + 72 \) | \(74 = 77 - \sqrt{2 + 7 }\) | \(75 = ?\) | \(76 = 7 \cdot 7 + 27 \) |
\(77 = \frac{ 7! }{ 72 } + 7 \) | \(78 = ?\) | \(79 = \sqrt{7 \cdot 7} + 72 \) | \(80 = \sqrt{2 + 7} + 77 \) |
\(81 = ?\) | \(82 = 77 - 2 + 7 \) | \(83 = \sqrt{2 + 7}! + 77 \) | \(84 = \sqrt{77^{2}} + 7 \) |
\(85 = ?\) | \(86 = 72 + 7 + 7 \) | \(87 = ?\) | \(88 = ?\) |
\(89 = ?\) | \(90 = \frac{ 7! }{ 7^{2} + 7 }\) | \(91 = 2 \cdot 7 + 77 \) | \(92 = ?\) |
\(93 = ?\) | \(94 = ?\) | \(95 = ?\) | \(96 = ( 7 + 7 ) \cdot 7 - 2 \) |
\(97 = ?\) | \(98 = 7^{2} + 7 \cdot 7 \) | \(99 = ?\) | \(100 = ( 7 + 7 ) \cdot 7 + 2 \) |