\(1 = ( 7 - 6 )^{26 }\) | \(2 = \frac{ 26 }{ 6 + 7 }\) | \(3 = 67 - 2^{6 }\) | \(4 = \sqrt{6 \cdot 7 - 26 }\) |
\(5 = 67 - 62 \) | \(6 = 72 - 66 \) | \(7 = \sqrt{62 - 6 - 7 }\) | \(8 = \frac{ 62 - 6 }{ 7 }\) |
\(9 = 6 \cdot 6 - 27 \) | \(10 = 6 - \frac{ 6 }{ 2 } + 7 \) | \(11 = \sqrt{\frac{ 726 }{ 6 }}\) | \(12 = 76 - 2^{6 }\) |
\(13 = \frac{ \sqrt{676} }{ 2 }\) | \(14 = 76 - 62 \) | \(15 = 27 - 6 - 6 \) | \(16 = 6 \cdot 7 - 26 \) |
\(17 = 66 - 7^{2 }\) | \(18 = \frac{ 72 }{ 6 } + 6 \) | \(19 = \frac{ 76 }{ 6 - 2 }\) | \(20 = 62 - 6 \cdot 7 \) |
\(21 = 27 - \sqrt{6 \cdot 6 }\) | \(22 = \frac{ 66 }{ \sqrt{2 + 7 } }\) | \(23 = 6^{2} - 6 - 7 \) | \(24 = \sqrt{676} - 2 \) |
\(25 = 26 + 6 - 7 \) | \(26 = ( 7 - 6 ) \cdot 26 \) | \(27 = 26 - 6 + 7 \) | \(28 = \sqrt{676} + 2 \) |
\(29 = 6^{\sqrt{6 - 2}} - 7 \) | \(30 = ( 2 \cdot 6 - 7 ) \cdot 6 \) | \(31 = 67 - 6^{2 }\) | \(32 = \frac{ 76 }{ 2 } - 6 \) |
\(33 = \sqrt{6 \cdot 6} + 27 \) | \(34 = ( 6 - 2 ) \cdot 7 + 6 \) | \(35 = \frac{ 76 - 6 }{ 2 }\) | \(36 = 72 - 6 \cdot 6 \) |
\(37 = 6^{2} - 6 + 7 \) | \(38 = \frac{ 266 }{ 7 }\) | \(39 = 66 - 27 \) | \(40 = \frac{ 66 }{ 2 } + 7 \) |
\(41 = 67 - 26 \) | \(42 = 762 - 6 !\) | \(43 = 67 - ( 6 - 2 )!\) | \(44 = \frac{ 76 }{ 2 } + 6 \) |
\(45 = 6 \cdot 6 + 2 + 7 \) | \(46 = \frac{ 276 }{ 6 }\) | \(47 = ?\) | \(48 = 6! - 672 \) |
\(49 = 62 - 6 - 7 \) | \(50 = 76 - 26 \) | \(51 = 2^{6} - 6 - 7 \) | \(52 = \sqrt{676} \cdot 2 \) |
\(53 = \frac{ 6! }{ 2 \cdot 6 } - 7 \) | \(54 = ( 7 - 2 )! - 66 \) | \(55 = 67 - 2 \cdot 6 \) | \(56 = \sqrt{66 - 2} \cdot 7 \) |
\(57 = 66 - 2 - 7 \) | \(58 = ( 6 \cdot 6 - 7 ) \cdot 2 \) | \(59 = 67 - 2 - 6 \) | \(60 = 72 - 6 - 6 \) |
\(61 = 62 + 6 - 7 \) | \(62 = ( 7 - 6 ) \cdot 62 \) | \(63 = 6 \cdot 6 + 27 \) | \(64 = 67 - \frac{ 6 }{ 2 }\) |
\(65 = 67 - \sqrt{6 - 2 }\) | \(66 = \sqrt{726 \cdot 6 }\) | \(67 = \sqrt{67^{\sqrt{6 - 2 }}}\) | \(68 = 6 \cdot 7 + 26 \) |
\(69 = \sqrt{2 + 7} + 66 \) | \(70 = \frac{ 6 }{ 2 } + 67 \) | \(71 = 66 - 2 + 7 \) | \(72 = \frac{ 72 }{ 6 } \cdot 6 \) |
\(73 = \frac{ 6 }{ 6 } + 72 \) | \(74 = 76 - \sqrt{6 - 2 }\) | \(75 = 62 + 6 + 7 \) | \(76 = ( 6 + 7 ) \cdot 6 - 2 \) |
\(77 = 2^{6} + 6 + 7 \) | \(78 = \sqrt{6 \cdot 6} + 72 \) | \(79 = 2 \cdot 6 + 67 \) | \(80 = 2 \cdot 7 + 66 \) |
\(81 = ?\) | \(82 = \sqrt{76^{2}} + 6 \) | \(83 = \frac{ 6! }{ 2 + 6 } - 7 \) | \(84 = 72 + 6 + 6 \) |
\(85 = 7^{2} + 6 \cdot 6 \) | \(86 = ( 6 \cdot 6 + 7 ) \cdot 2 \) | \(87 = \frac{ \sqrt{( 6 + 7! ) \cdot 6} }{ 2 }\) | \(88 = 2 \cdot 6 + 76 \) |
\(89 = ?\) | \(90 = \frac{ 7! }{ 62 - 6 }\) | \(91 = ( 6 - 2 )! + 67 \) | \(92 = 2^{7} - 6 \cdot 6 \) |
\(93 = 26 + 67 \) | \(94 = \frac{ 6! - 62 }{ 7 }\) | \(95 = ?\) | \(96 = ( 6 \cdot 7 + 6 ) \cdot 2 \) |
\(97 = \frac{ 6! }{ 2 + 6 } + 7 \) | \(98 = ( 2 + 6 + 6 ) \cdot 7 \) | \(99 = ?\) | \(100 = ( 6 - 2 )! + 76 \) |