\(1 = 25^{7 - 7 }\) | \(2 = \sqrt{\frac{ 27 - 7 }{ 5 }}\) | \(3 = 75 - 72 \) | \(4 = \frac{ 27 - 7 }{ 5 }\) |
\(5 = \sqrt{77 - 52 }\) | \(6 = ( 75 - 72 )!\) | \(7 = 2 + 5 - 7 + 7 \) | \(8 = 5 \cdot 7 - 27 \) |
\(9 = 7 - \sqrt{25} + 7 \) | \(10 = \sqrt{( 27 - 7 ) \cdot 5 }\) | \(11 = 25 - 7 - 7 \) | \(12 = \sqrt{( 7 - 5 ) \cdot 72 }\) |
\(13 = \frac{ 72 - 7 }{ 5 }\) | \(14 = ( 7 - \sqrt{25} ) \cdot 7 \) | \(15 = 72 - 57 \) | \(16 = \sqrt{57 + 7} \cdot 2 \) |
\(17 = 77 - \frac{ 5! }{ 2 }\) | \(18 = 25 - \sqrt{7 \cdot 7 }\) | \(19 = \sqrt{25} + 7 + 7 \) | \(20 = ( 5 - 2 )! + 7 + 7 \) |
\(21 = \frac{ 27 + 5! }{ 7 }\) | \(22 = \frac{ 7 \cdot 7 - 5 }{ 2 }\) | \(23 = ( 7 + 7 ) \cdot 2 - 5 \) | \(24 = 25 - \frac{ 7 }{ 7 }\) |
\(25 = 77 - 52 \) | \(26 = \frac{ 7 }{ 7 } + 25 \) | \(27 = \sqrt{27^{7 - 5 }}\) | \(28 = \sqrt{25} \cdot 7 - 7 \) |
\(29 = 27 - 5 + 7 \) | \(30 = 57 - 27 \) | \(31 = ( 5 + 7 ) \cdot 2 + 7 \) | \(32 = \frac{ 57 + 7 }{ 2 }\) |
\(33 = ( 7 + 7 ) \cdot 2 + 5 \) | \(34 = \frac{ 75 - 7 }{ 2 }\) | \(35 = \sqrt{25 \cdot 7 \cdot 7 }\) | \(36 = \frac{ 72 }{ 7 - 5 }\) |
\(37 = 72 - 5 \cdot 7 \) | \(38 = 52 - 7 - 7 \) | \(39 = 25 + 7 + 7 \) | \(40 = 5 \cdot 7 - 2 + 7 \) |
\(41 = \frac{ 75 + 7 }{ 2 }\) | \(42 = \sqrt{25} \cdot 7 + 7 \) | \(43 = 57 - 2 \cdot 7 \) | \(44 = 7 \cdot 7 - \sqrt{25 }\) |
\(45 = \sqrt{27 \cdot 75 }\) | \(46 = 2^{5} + 7 + 7 \) | \(47 = 7^{2} + 5 - 7 \) | \(48 = 75 - 27 \) |
\(49 = 7^{7 - \sqrt{25 }}\) | \(50 = \sqrt{57^{2}} - 7 \) | \(51 = 52 - \frac{ 7 }{ 7 }\) | \(52 = 77 - 25 \) |
\(53 = \frac{ 7 }{ 7 } + 52 \) | \(54 = ( 7 - 5 ) \cdot 27 \) | \(55 = 5! - 72 + 7 \) | \(56 = ( 2 + 5 ) \cdot 7 + 7 \) |
\(57 = \sqrt{2^{5 + 7}} - 7 \) | \(58 = ( 2 + 7 ) \cdot 7 - 5 \) | \(59 = \sqrt{7 \cdot 7} + 52 \) | \(60 = 72 - 5 - 7 \) |
\(61 = 75 - 2 \cdot 7 \) | \(62 = 5 \cdot 7 + 27 \) | \(63 = ( 7 - 2 )! - 57 \) | \(64 = \sqrt{57^{2}} + 7 \) |
\(65 = \frac{ 7! }{ 72 } - 5 \) | \(66 = 52 + 7 + 7 \) | \(67 = 77 - 2 \cdot 5 \) | \(68 = \sqrt{75^{2}} - 7 \) |
\(69 = 27 \cdot 7 - 5 !\) | \(70 = 72 + 5 - 7 \) | \(71 = 2 \cdot 7 + 57 \) | \(72 = 77 - \sqrt{25 }\) |
\(73 = 5! - ( 7 \cdot 7 - 2 )\) | \(74 = 7 \cdot 7 + 25 \) | \(75 = \frac{ 7! }{ 72 } + 5 \) | \(76 = ( 7 + 7 )^{2} - 5 !\) |
\(77 = 2 \cdot 5 \cdot 7 + 7 \) | \(78 = \sqrt{2 + 7} + 75 \) | \(79 = ?\) | \(80 = 75 - 2 + 7 \) |
\(81 = ( 7 - 5 + 7 )^{2 }\) | \(82 = \sqrt{25} + 77 \) | \(83 = ( 5 - 2 )! + 77 \) | \(84 = 27 + 57 \) |
\(85 = 5! - ( 7 - 2 ) \cdot 7 \) | \(86 = 5! - 27 - 7 \) | \(87 = 2 \cdot 5 + 77 \) | \(88 = ( 7 \cdot 7 - 5 ) \cdot 2 \) |
\(89 = 2 \cdot 7 + 75 \) | \(90 = ?\) | \(91 = ( ( 5 - 2 )! + 7 ) \cdot 7 \) | \(92 = 5! - ( 7 + 7 ) \cdot 2 \) |
\(93 = 2 \cdot 7 \cdot 7 - 5 \) | \(94 = ?\) | \(95 = ?\) | \(96 = 5! - ( 7 - \sqrt{2 + 7 } )!\) |
\(97 = ?\) | \(98 = ( 2 + 5 + 7 ) \cdot 7 \) | \(99 = 5! - 2 \cdot 7 - 7 \) | \(100 = ( 27 - 7 ) \cdot 5 \) |