\(1 = 24^{8 - 8 }\) | \(2 = 84 - 82 \) | \(3 = \frac{ 84 }{ 28 }\) | \(4 = \frac{ 24 + 8 }{ 8 }\) |
\(5 = 8 - \frac{ 24 }{ 8 }\) | \(6 = ( \frac{ 84 }{ 28 } )!\) | \(7 = \frac{ 28 }{ 8 - 4 }\) | \(8 = \sqrt{88 - 24 }\) |
\(9 = \frac{ 28 + 8 }{ 4 }\) | \(10 = \sqrt{28 + 8} + 4 \) | \(11 = \frac{ 24 }{ 8 } + 8 \) | \(12 = \frac{ 288 }{ 4 ! }\) |
\(13 = \frac{ 2 + 8 }{ \sqrt{4} } + 8 \) | \(14 = \frac{ 28 \cdot 4 }{ 8 }\) | \(15 = \frac{ 28 }{ 4 } + 8 \) | \(16 = \sqrt{248 + 8 }\) |
\(17 = 2^{4} + \frac{ 8 }{ 8 }\) | \(18 = 28 - \sqrt{4} - 8 \) | \(19 = 2 \cdot 8 + \frac{ 4! }{ 8 }\) | \(20 = 48 - 28 \) |
\(21 = \frac{ 84 \cdot 2 }{ 8 }\) | \(22 = 8 \cdot 8 - 42 \) | \(23 = 24 - \frac{ 8 }{ 8 }\) | \(24 = \frac{ 24 }{ 8 } \cdot 8 \) |
\(25 = \frac{ 8 }{ 8 } + 24 \) | \(26 = 28 - \frac{ 8 }{ 4 }\) | \(27 = \frac{ 8 }{ 8 } + 2 + 4 !\) | \(28 = \frac{ 48 + 8 }{ 2 }\) |
\(29 = \frac{ 2^{8} - 4! }{ 8 }\) | \(30 = \frac{ 8 }{ 4 } + 28 \) | \(31 = \frac{ 248 }{ 8 }\) | \(32 = 28 - 4 + 8 \) |
\(33 = \frac{ 82 }{ \sqrt{4} } - 8 \) | \(34 = 82 - 48 \) | \(35 = \frac{ 2^{8} + 4! }{ 8 }\) | \(36 = ( \frac{ 48 }{ 8 } )^{2 }\) |
\(37 = \frac{ 82 - 8 }{ \sqrt{4 } }\) | \(38 = 48 - 2 - 8 \) | \(39 = ?\) | \(40 = 24 + 8 + 8 \) |
\(41 = 42 - \frac{ 8 }{ 8 }\) | \(42 = 42 - 8 + 8 \) | \(43 = \frac{ 8 }{ 8 } + 42 \) | \(44 = 48 - \frac{ 8 }{ 2 }\) |
\(45 = \frac{ 82 + 8 }{ \sqrt{4 } }\) | \(46 = 88 - 42 \) | \(47 = 2 \cdot 4! - \frac{ 8 }{ 8 }\) | \(48 = \frac{ 88 }{ 2 } + 4 \) |
\(49 = \frac{ 82 }{ \sqrt{4} } + 8 \) | \(50 = 82 - 4 \cdot 8 \) | \(51 = ?\) | \(52 = \frac{ 8 }{ 2 } + 48 \) |
\(53 = ?\) | \(54 = 48 - 2 + 8 \) | \(55 = ?\) | \(56 = 84 - 28 \) |
\(57 = ?\) | \(58 = 42 + 8 + 8 \) | \(59 = ?\) | \(60 = 4 \cdot 8 + 28 \) |
\(61 = 8^{2} - \frac{ 4! }{ 8 }\) | \(62 = 88 - 2 - 4 !\) | \(63 = 8 \cdot 8 - \frac{ 2 }{ \sqrt{4 } }\) | \(64 = 88 - 24 \) |
\(65 = \frac{ 2 }{ \sqrt{4} } + 8 \cdot 8 \) | \(66 = 82 - 4! + 8 \) | \(67 = 8^{2} + \frac{ 4! }{ 8 }\) | \(68 = 84 - 2 \cdot 8 \) |
\(69 = ?\) | \(70 = 82 - 4 - 8 \) | \(71 = \frac{ 4!^{2} - 8 }{ 8 }\) | \(72 = \frac{ 288 }{ 4 }\) |
\(73 = \frac{ 4!^{2} + 8 }{ 8 }\) | \(74 = 84 - 2 - 8 \) | \(75 = ?\) | \(76 = 28 + 48 \) |
\(77 = ?\) | \(78 = 82 + 4 - 8 \) | \(79 = 82 - \frac{ 4! }{ 8 }\) | \(80 = ( 28 - 8 ) \cdot 4 \) |
\(81 = \sqrt{( \frac{ 24 }{ 8 } )^{8 }}\) | \(82 = 88 - 2 - 4 \) | \(83 = \sqrt{( \frac{ 4! }{ 8 } )^{8}} + 2 \) | \(84 = \frac{ 8 }{ 4 } + 82 \) |
\(85 = \frac{ 4! }{ 8 } + 82 \) | \(86 = 82 - 4 + 8 \) | \(87 = 88 - \frac{ 2 }{ \sqrt{4 } }\) | \(88 = 8 \cdot 8 + 24 \) |
\(89 = \frac{ 2 }{ \sqrt{4} } + 88 \) | \(90 = 84 - 2 + 8 \) | \(91 = \frac{ ( 2 + 4 )! + 8 }{ 8 }\) | \(92 = 8^{\sqrt{4}} + 28 \) |
\(93 = \frac{ ( 8 - 2 )! + 4! }{ 8 }\) | \(94 = 82 + 4 + 8 \) | \(95 = ?\) | \(96 = 2 \cdot 4 + 88 \) |
\(97 = ?\) | \(98 = \frac{ 28^{\sqrt{4}} }{ 8 }\) | \(99 = ?\) | \(100 = 2 \cdot 8 + 84 \) |