\(1 = 24^{4 - 4 }\) | \(2 = 44 - 42 \) | \(3 = \frac{ 24 }{ 4 + 4 }\) | \(4 = 24 - 4! + 4 \) |
\(5 = \frac{ 24 - 4 }{ 4 }\) | \(6 = \frac{ 24 }{ \sqrt{4 \cdot 4 } }\) | \(7 = \frac{ 24 + 4 }{ 4 }\) | \(8 = 24 - 4 \cdot 4 \) |
\(9 = \frac{ 44 }{ 4 } - 2 \) | \(10 = \frac{ 24 }{ 4 } + 4 \) | \(11 = \frac{ 42 + \sqrt{4} }{ 4 }\) | \(12 = \frac{ 24 }{ 4 } \cdot \sqrt{4 }\) |
\(13 = \frac{ 44 }{ 4 } + 2 \) | \(14 = \frac{ 24 + 4 }{ \sqrt{4 } }\) | \(15 = 2^{4} - \frac{ 4 }{ 4 }\) | \(16 = 24 - 4 - 4 \) |
\(17 = \frac{ 42 }{ \sqrt{4} } - 4 \) | \(18 = \frac{ 44 }{ 2 } - 4 \) | \(19 = \frac{ 42 - 4 }{ \sqrt{4 } }\) | \(20 = 44 - 24 \) |
\(21 = \frac{ 42 \cdot \sqrt{4} }{ 4 }\) | \(22 = \frac{ 44 \cdot 2 }{ 4 }\) | \(23 = 24 - \frac{ 4 }{ 4 }\) | \(24 = \frac{ 24 }{ 4 } \cdot 4 \) |
\(25 = \frac{ 4 }{ 4 } + 24 \) | \(26 = 42 - 4 \cdot 4 \) | \(27 = \frac{ 4 }{ 4 } + 2 + 4 !\) | \(28 = 44 - 2^{4 }\) |
\(29 = \frac{ 2 }{ \sqrt{4} } + 4 + 4 !\) | \(30 = \frac{ 24 }{ 4 } + 4 !\) | \(31 = \frac{ ( 2 + 4 )! + 4! }{ 4 ! }\) | \(32 = 24 + 4 + 4 \) |
\(33 = \frac{ 42 + 4! }{ \sqrt{4 } }\) | \(34 = 42 - 4 - 4 \) | \(35 = \frac{ 4! - 2 }{ \sqrt{4} } + 4 !\) | \(36 = 44 - 2 \cdot 4 \) |
\(37 = \frac{ 2 + 4! }{ \sqrt{4} } + 4 !\) | \(38 = 44 - 2 - 4 \) | \(39 = ?\) | \(40 = 4 \cdot 4 + 24 \) |
\(41 = 42 - \frac{ 4 }{ 4 }\) | \(42 = 42 - 4 + 4 \) | \(43 = \frac{ 4 }{ 4 } + 42 \) | \(44 = 24 - 4 + 4 !\) |
\(45 = \frac{ 2 }{ \sqrt{4} } + 44 \) | \(46 = 44 - 2 + 4 \) | \(47 = 2 \cdot 4! - \frac{ 4 }{ 4 }\) | \(48 = \frac{ 24 }{ \sqrt{4} } \cdot 4 \) |
\(49 = ( \frac{ 4 + 4! }{ 4 } )^{2 }\) | \(50 = 42 + 4 + 4 \) | \(51 = ?\) | \(52 = 2 \cdot 4 + 44 \) |
\(53 = ?\) | \(54 = 4 \cdot 4! - 42 \) | \(55 = ?\) | \(56 = ( 24 + 4 ) \cdot \sqrt{4 }\) |
\(57 = ?\) | \(58 = 4 \cdot 4 + 42 \) | \(59 = ?\) | \(60 = 2^{4} + 44 \) |
\(61 = \frac{ 244 }{ 4 }\) | \(62 = 42 - 4 + 4 !\) | \(63 = \sqrt{\sqrt{2^{4!}}} - \frac{ 4 }{ 4 }\) | \(64 = \sqrt{4}^{\frac{ 24 }{ 4 }}\) |
\(65 = \sqrt{\sqrt{2^{4!}}} + \frac{ 4 }{ 4 }\) | \(66 = 44 - 2 + 4 !\) | \(67 = ?\) | \(68 = 24 + 44 \) |
\(69 = ?\) | \(70 = 42 + 4 + 4 !\) | \(71 = ?\) | \(72 = 24 \cdot 4 - 4 !\) |
\(73 = ?\) | \(74 = 4 \cdot 4! + 2 - 4 !\) | \(75 = ?\) | \(76 = ( 42 - 4 ) \cdot \sqrt{4 }\) |
\(77 = ?\) | \(78 = ( 4! - 4 ) \cdot 4 - 2 \) | \(79 = ?\) | \(80 = ( 24 - 4 ) \cdot 4 \) |
\(81 = ( \frac{ 4 }{ 4 } + 2 )^{4 }\) | \(82 = 42 \cdot \sqrt{4} - \sqrt{4 }\) | \(83 = ?\) | \(84 = 44 \cdot 2 - 4 \) |
\(85 = ?\) | \(86 = 42 + 44 \) | \(87 = ?\) | \(88 = \frac{ 44 }{ 2 } \cdot 4 \) |
\(89 = ?\) | \(90 = 44 \cdot 2 + \sqrt{4 }\) | \(91 = ?\) | \(92 = 24 \cdot 4 - 4 \) |
\(93 = ?\) | \(94 = 24 \cdot 4 - \sqrt{4 }\) | \(95 = 4 \cdot 4! - \frac{ 2 }{ \sqrt{4 } }\) | \(96 = ( 44 + 4 ) \cdot 2 \) |
\(97 = \frac{ 2 }{ \sqrt{4} } + 4 \cdot 4 !\) | \(98 = 24 \cdot 4 + \sqrt{4 }\) | \(99 = ?\) | \(100 = 24 \cdot 4 + 4 \) |