\(1 = 33 - 32 \) | \(2 = \sqrt{3^{3} - 23 }\) | \(3 = \frac{ \sqrt{33 + 3} }{ 2 }\) | \(4 = 3^{3} - 23 \) |
\(5 = 32 - 3^{3 }\) | \(6 = ( 3 - ( 3 - 2 ) ) \cdot 3 \) | \(7 = 3 - 2 + 3 + 3 \) | \(8 = \sqrt{33 + 3} + 2 \) |
\(9 = \frac{ 33 }{ 3 } - 2 \) | \(10 = 33 - 23 \) | \(11 = \frac{ \sqrt{33^{2}} }{ 3 }\) | \(12 = \sqrt{33 + 3} \cdot 2 \) |
\(13 = \frac{ 33 }{ 3 } + 2 \) | \(14 = 23 - 3 \cdot 3 \) | \(15 = \frac{ 33 - 3 }{ 2 }\) | \(16 = \frac{ 32 \cdot 3 }{ 3 ! }\) |
\(17 = 23 - 3 - 3 \) | \(18 = \frac{ 33 + 3 }{ 2 }\) | \(19 = 3^{3} - 2^{3 }\) | \(20 = 23 - 3! + 3 \) |
\(21 = 23 - \frac{ 3! }{ 3 }\) | \(22 = 23 - \frac{ 3 }{ 3 }\) | \(23 = 23 - 3 + 3 \) | \(24 = \frac{ 3 }{ 3 } + 23 \) |
\(25 = 33 - 2^{3 }\) | \(26 = 32 - 3 - 3 \) | \(27 = 33 - 2 \cdot 3 \) | \(28 = 33 - 2 - 3 \) |
\(29 = 23 + 3 + 3 \) | \(30 = 32 - \frac{ 3! }{ 3 }\) | \(31 = 32 - \frac{ 3 }{ 3 }\) | \(32 = 3 \cdot 3 + 23 \) |
\(33 = \frac{ 3 }{ 3 } + 32 \) | \(34 = 33 - 2 + 3 \) | \(35 = 32 - 3 + 3 !\) | \(36 = \sqrt{33^{2}} + 3 \) |
\(37 = 33 - 2 + 3 !\) | \(38 = 32 + 3 + 3 \) | \(39 = 2 \cdot 3 + 33 \) | \(40 = \frac{ ( 2^{3} - 3 )! }{ 3 }\) |
\(41 = 3 \cdot 3 + 32 \) | \(42 = 3^{2} + 33 \) | \(43 = \frac{ ( 2 + 3 )! }{ 3 } + 3 \) | \(44 = 32 + 3! + 3 !\) |
\(45 = 2 \cdot 3! + 33 \) | \(46 = \frac{ 23 \cdot 3! }{ 3 }\) | \(47 = ?\) | \(48 = ( 3^{3} - 3 ) \cdot 2 \) |
\(49 = ( \frac{ 3 }{ 3 } + 3! )^{2 }\) | \(50 = 3^{3} + 23 \) | \(51 = ( 23 - 3! ) \cdot 3 \) | \(52 = 3 \cdot 3 \cdot 3! - 2 \) |
\(53 = \frac{ ( 2^{3} )! }{ 3!! } - 3 \) | \(54 = ( 33 - 3! ) \cdot 2 \) | \(55 = 2^{3!} - 3 \cdot 3 \) | \(56 = 23 + 33 \) |
\(57 = 3^{3} \cdot 2 + 3 \) | \(58 = 2^{3!} - 3 - 3 \) | \(59 = 3^{3} + 32 \) | \(60 = ( 23 - 3 ) \cdot 3 \) |
\(61 = 2^{3 + 3} - 3 \) | \(62 = ( \frac{ 3! }{ 3 } )^{3!} - 2 \) | \(63 = 33 \cdot 2 - 3 \) | \(64 = \frac{ 32 \cdot 3! }{ 3 }\) |
\(65 = 32 + 33 \) | \(66 = 23 \cdot 3 - 3 \) | \(67 = 2^{3 + 3} + 3 \) | \(68 = 3! \cdot 3! + 32 \) |
\(69 = 33 \cdot 2 + 3 \) | \(70 = 2^{3 + 3} + 3 !\) | \(71 = ?\) | \(72 = 23 \cdot 3 + 3 \) |
\(73 = 2^{3!} + 3 \cdot 3 \) | \(74 = \frac{ 3!^{3} }{ 3 } + 2 \) | \(75 = 23 \cdot 3 + 3 !\) | \(76 = 2^{3!} + 3! + 3 !\) |
\(77 = \frac{ 3!! }{ 3^{2} } - 3 \) | \(78 = ( 23 + 3 ) \cdot 3 \) | \(79 = 3^{3} \cdot 3 - 2 \) | \(80 = \frac{ \frac{ ( 2 \cdot 3 )! }{ 3 } }{ 3 }\) |
\(81 = 3^{3 - 2 + 3 }\) | \(82 = \frac{ 3!! }{ 3 \cdot 3 } + 2 \) | \(83 = 3^{3} \cdot 3 + 2 \) | \(84 = ( 3 \cdot 3 )^{2} + 3 \) |
\(85 = ?\) | \(86 = \frac{ 3!! }{ 3^{2} } + 3 !\) | \(87 = ( 32 - 3 ) \cdot 3 \) | \(88 = \frac{ 3!! }{ 3! } - 32 \) |
\(89 = ?\) | \(90 = 32 \cdot 3 - 3 !\) | \(91 = 2^{3!} + 3^{3 }\) | \(92 = ?\) |
\(93 = 32 \cdot 3 - 3 \) | \(94 = ?\) | \(95 = ?\) | \(96 = \sqrt{3 \cdot 3} \cdot 32 \) |
\(97 = 33 \cdot 3 - 2 \) | \(98 = ?\) | \(99 = 32 \cdot 3 + 3 \) | \(100 = 2^{3!} + 3! \cdot 3 !\) |