\(1 = \frac{ 27 }{ 9 } - 2 \) | \(2 = 29 - 27 \) | \(3 = \frac{ 9^{2} }{ 27 }\) | \(4 = \frac{ \frac{ 72 }{ 2 } }{ 9 }\) |
\(5 = \frac{ 27 }{ 9 } + 2 \) | \(6 = 22 - 7 - 9 \) | \(7 = \frac{ 27 }{ \sqrt{9} } - 2 \) | \(8 = 2^{\frac{ 27 }{ 9 }}\) |
\(9 = ( \frac{ 27 }{ 9 } )^{2 }\) | \(10 = \frac{ 72 }{ 9 } + 2 \) | \(11 = \frac{ 22 }{ 9 - 7 }\) | \(12 = 22 - 7 - \sqrt{9 }\) |
\(13 = 2 \cdot 9 + 2 - 7 \) | \(14 = \sqrt{27 - 2} + 9 \) | \(15 = 29 - 2 \cdot 7 \) | \(16 = 27 - 2 - 9 \) |
\(17 = \frac{ 2 }{ 2 } + 7 + 9 \) | \(18 = \frac{ 27 + 9 }{ 2 }\) | \(19 = 27 - 2^{\sqrt{9 }}\) | \(20 = 92 - 72 \) |
\(21 = 27 - 2 \cdot \sqrt{9 }\) | \(22 = \sqrt{22^{9 - 7 }}\) | \(23 = 2^{7 - 2} - 9 \) | \(24 = 22 - 7 + 9 \) |
\(25 = \sqrt{729} - 2 \) | \(26 = 22 + 7 - \sqrt{9 }\) | \(27 = \frac{ 72 }{ 2 } - 9 \) | \(28 = 27 - 2 + \sqrt{9 }\) |
\(29 = \sqrt{729} + 2 \) | \(30 = ( 7 + 9 ) \cdot 2 - 2 \) | \(31 = 7^{2} - 2 \cdot 9 \) | \(32 = 22 + 7 + \sqrt{9 }\) |
\(33 = 2 \cdot \sqrt{9} + 27 \) | \(34 = 27 - 2 + 9 \) | \(35 = 2^{\sqrt{9}} + 27 \) | \(36 = ( 27 - 9 ) \cdot 2 \) |
\(37 = ( 2 + 2 ) \cdot 7 + 9 \) | \(38 = 22 + 7 + 9 \) | \(39 = \frac{ 92 }{ 2 } - 7 \) | \(40 = ( 2 + 2 )! + 7 + 9 \) |
\(41 = 7 \cdot 9 - 22 \) | \(42 = 7^{2} + 2 - 9 \) | \(43 = 72 - 29 \) | \(44 = ( 9 - 7 ) \cdot 22 \) |
\(45 = 27 \cdot 2 - 9 \) | \(46 = ( 2 \cdot 7 + 9 ) \cdot 2 \) | \(47 = ( 7 - 2 ) \cdot 9 + 2 \) | \(48 = ( 27 - \sqrt{9} ) \cdot 2 \) |
\(49 = 7^{\sqrt{9} - \frac{ 2 }{ 2 }}\) | \(50 = ( 2 \cdot 9 + 7 ) \cdot 2 \) | \(51 = 29 \cdot 2 - 7 \) | \(52 = 7^{\sqrt{2 + 2}} + \sqrt{9 }\) |
\(53 = \frac{ 92 }{ 2 } + 7 \) | \(54 = \sqrt{729} \cdot 2 \) | \(55 = 79 - ( 2 + 2 )!\) | \(56 = 27 + 29 \) |
\(57 = 79 - 22 \) | \(58 = 7^{\sqrt{2 + 2}} + 9 \) | \(59 = 22 \cdot \sqrt{9} - 7 \) | \(60 = ( 27 + \sqrt{9} ) \cdot 2 \) |
\(61 = 72 - 2 - 9 \) | \(62 = 7 \cdot 9 - \frac{ 2 }{ 2 }\) | \(63 = 27 \cdot 2 + 9 \) | \(64 = ( \frac{ 72 }{ 9 } )^{2 }\) |
\(65 = 92 - 27 \) | \(66 = 72 - 2 \cdot \sqrt{9 }\) | \(67 = 72 - 2 - \sqrt{9 }\) | \(68 = 72 + 2 - \sqrt{9 }!\) |
\(69 = \sqrt{72^{2}} - \sqrt{9 }\) | \(70 = \frac{ 9! }{ 72^{2 } }\) | \(71 = 72 + 2 - \sqrt{9 }\) | \(72 = ( 27 + 9 ) \cdot 2 \) |
\(73 = 22 \cdot \sqrt{9} + 7 \) | \(74 = 9^{\sqrt{2 + 2}} - 7 \) | \(75 = 97 - 22 \) | \(76 = 9^{2} + 2 - 7 \) |
\(77 = 72 + 2 + \sqrt{9 }\) | \(78 = 7^{2} + 29 \) | \(79 = 72 - 2 + 9 \) | \(80 = \frac{ 2 }{ 2 } + 79 \) |
\(81 = \frac{ 27^{2} }{ 9 }\) | \(82 = 2 \cdot 7 \cdot \sqrt{9}! - 2 \) | \(83 = 72 + 2 + 9 \) | \(84 = 2 \cdot \sqrt{9}! + 72 \) |
\(85 = 7 \cdot 9 + 22 \) | \(86 = 9^{2} - 2 + 7 \) | \(87 = 92 + 2 - 7 \) | \(88 = ( 7 - \sqrt{9} ) \cdot 22 \) |
\(89 = 92 - \sqrt{2 + 7 }\) | \(90 = 2 \cdot 9 + 72 \) | \(91 = ( 22 - 9 ) \cdot 7 \) | \(92 = ( 7^{2} - \sqrt{9} ) \cdot 2 \) |
\(93 = 97 - 2 - 2 \) | \(94 = \frac{ 9! }{ 7! } + 22 \) | \(95 = \sqrt{2 + 7} + 92 \) | \(96 = 97 - \frac{ 2 }{ 2 }\) |
\(97 = 92 - 2 + 7 \) | \(98 = \frac{ 2 }{ 2 } + 97 \) | \(99 = 2^{7} - 29 \) | \(100 = ( \frac{ \sqrt{9}!! }{ 72 } )^{2 }\) |