\(1 = 28 - 27 \) | \(2 = \frac{ 22 - 8 }{ 7 }\) | \(3 = 8 - \sqrt{27 - 2 }\) | \(4 = \frac{ \sqrt{28^{2}} }{ 7 }\) |
\(5 = \sqrt{\frac{ 72 }{ 8 }} + 2 \) | \(6 = \frac{ 28 }{ 7 } + 2 \) | \(7 = 22 - 7 - 8 \) | \(8 = \frac{ 28 \cdot 2 }{ 7 }\) |
\(9 = \frac{ \sqrt{72^{2}} }{ 8 }\) | \(10 = 82 - 72 \) | \(11 = 27 - 2 \cdot 8 \) | \(12 = \frac{ 72 }{ 8 - 2 }\) |
\(13 = \sqrt{22 \cdot 8 - 7 }\) | \(14 = 28 - 2 \cdot 7 \) | \(15 = 2 - 2 + 7 + 8 \) | \(16 = ( \frac{ 28 }{ 7 } )^{2 }\) |
\(17 = \sqrt{282 + 7 }\) | \(18 = \frac{ 72 \cdot 2 }{ 8 }\) | \(19 = 28 - 2 - 7 \) | \(20 = \sqrt{72 \cdot 2} + 8 \) |
\(21 = 22 + 7 - 8 \) | \(22 = ( 8 - 7 ) \cdot 22 \) | \(23 = 22 - 7 + 8 \) | \(24 = \sqrt{82 \cdot 7 + 2 }\) |
\(25 = 27 - \sqrt{\frac{ 8 }{ 2 }}\) | \(26 = ( \frac{ 28 }{ 7 } )! + 2 \) | \(27 = ( 2 + 8 ) \cdot 2 + 7 \) | \(28 = \sqrt{782 + 2 }\) |
\(29 = \sqrt{\frac{ 8 }{ 2 }} + 27 \) | \(30 = \frac{ 8 }{ 2 } \cdot 7 + 2 \) | \(31 = \frac{ 8 }{ 2 } + 27 \) | \(32 = \frac{ 72 - 8 }{ 2 }\) |
\(33 = 27 - 2 + 8 \) | \(34 = \frac{ 272 }{ 8 }\) | \(35 = \sqrt{27^{2}} + 8 \) | \(36 = \frac{ 72 }{ \sqrt{\frac{ 8 }{ 2 }} }\) |
\(37 = 22 + 7 + 8 \) | \(38 = ( 27 - 8 ) \cdot 2 \) | \(39 = \sqrt{( \frac{ 78 }{ 2 } )^{2 }}\) | \(40 = \frac{ 72 + 8 }{ 2 }\) |
\(41 = \frac{ 78 }{ 2 } + 2 \) | \(42 = ( 28 - 7 ) \cdot 2 \) | \(43 = 2 \cdot 8 + 27 \) | \(44 = 72 - 28 \) |
\(45 = 7^{2} - \frac{ 8 }{ 2 }\) | \(46 = 27 \cdot 2 - 8 \) | \(47 = 7^{\sqrt{\frac{ 8 }{ 2 }}} - 2 \) | \(48 = \frac{ 82 }{ 2 } + 7 \) |
\(49 = 28 \cdot 2 - 7 \) | \(50 = ( 7 - 2 ) \cdot ( 2 + 8 )\) | \(51 = ( \frac{ 8 }{ 2 } )! + 27 \) | \(52 = 7 \cdot 8 - 2 - 2 \) |
\(53 = 7^{2} + \frac{ 8 }{ 2 }\) | \(54 = \sqrt{\frac{ 8 }{ 2 }} \cdot 27 \) | \(55 = 27 + 28 \) | \(56 = 78 - 22 \) |
\(57 = 2^{8 - 2} - 7 \) | \(58 = \sqrt{7^{2}} \cdot 8 + 2 \) | \(59 = 7^{2} + 2 + 8 \) | \(60 = \frac{ 7! }{ 82 + 2 }\) |
\(61 = 8^{2} - \sqrt{2 + 7 }\) | \(62 = 27 \cdot 2 + 8 \) | \(63 = 28 \cdot 2 + 7 \) | \(64 = \sqrt{72^{2}} - 8 \) |
\(65 = 87 - 22 \) | \(66 = 72 + 2 - 8 \) | \(67 = \sqrt{2 + 7} + 8^{2 }\) | \(68 = 72 - \frac{ 8 }{ 2 }\) |
\(69 = 8^{2} - 2 + 7 \) | \(70 = ( 27 + 8 ) \cdot 2 \) | \(71 = 2^{8 - 2} + 7 \) | \(72 = \frac{ 2^{7} }{ 2 } + 8 \) |
\(73 = 82 - 2 - 7 \) | \(74 = 78 - 2 - 2 \) | \(75 = \sqrt{82^{2}} - 7 \) | \(76 = \sqrt{722 \cdot 8 }\) |
\(77 = 7^{2} + 28 \) | \(78 = 7 \cdot 8 + 22 \) | \(79 = \frac{ 2 }{ 2 } + 78 \) | \(80 = \sqrt{72^{2}} + 8 \) |
\(81 = ( \frac{ 72 }{ 8 } )^{2 }\) | \(82 = 72 + 2 + 8 \) | \(83 = 87 - 2 - 2 \) | \(84 = \sqrt{2 + 7} \cdot 28 \) |
\(85 = \sqrt{2 + 7} + 82 \) | \(86 = 87 - \frac{ 2 }{ 2 }\) | \(87 = 82 - 2 + 7 \) | \(88 = 2 \cdot 8 + 72 \) |
\(89 = \sqrt{82^{2}} + 7 \) | \(90 = \frac{ 7! }{ 28 \cdot 2 }\) | \(91 = 8^{2} + 27 \) | \(92 = ( 7 - 2 )! - 28 \) |
\(93 = ( 2 + 8 )^{2} - 7 \) | \(94 = ( \sqrt{\sqrt{7^{8}}} - 2 ) \cdot 2 \) | \(95 = ?\) | \(96 = 2 \cdot 7 + 82 \) |
\(97 = ?\) | \(98 = ( 22 - 8 ) \cdot 7 \) | \(99 = ?\) | \(100 = 22 + 78 \) |