\(1 = \frac{ 27 }{ 27 }\) | \(2 = 7 - \sqrt{27 - 2 }\) | \(3 = \frac{ 27 }{ 2 + 7 }\) | \(4 = 7 - ( 7 - ( 2 + 2 ) )\) |
\(5 = \sqrt{72 \cdot 2} - 7 \) | \(6 = \sqrt{22 + 7 + 7 }\) | \(7 = ( 2 - 2 ) \cdot 7 + 7 \) | \(8 = 22 - 7 - 7 \) |
\(9 = \frac{ 27 }{ \sqrt{2 + 7 } }\) | \(10 = \frac{ 27 - 7 }{ 2 }\) | \(11 = \sqrt{7^{2} + 72 }\) | \(12 = \sqrt{72 + 72 }\) |
\(13 = 27 - 2 \cdot 7 \) | \(14 = 2 - 2 + 7 + 7 \) | \(15 = 22 - \sqrt{7 \cdot 7 }\) | \(16 = \sqrt{2 + 2} + 7 + 7 \) |
\(17 = \frac{ 27 + 7 }{ 2 }\) | \(18 = 27 - 2 - 7 \) | \(19 = \sqrt{72 \cdot 2} + 7 \) | \(20 = \sqrt{27^{2}} - 7 \) |
\(21 = 22 - \frac{ 7 }{ 7 }\) | \(22 = 22 - 7 + 7 \) | \(23 = \frac{ 7 }{ 7 } + 22 \) | \(24 = 27 - \sqrt{2 + 7 }\) |
\(25 = ( 2 + 7 ) \cdot 2 + 7 \) | \(26 = ( 7 + 7 ) \cdot 2 - 2 \) | \(27 = \sqrt{722 + 7 }\) | \(28 = \frac{ ( 2 \cdot 7 )^{2} }{ 7 }\) |
\(29 = \frac{ 72 }{ 2 } - 7 \) | \(30 = \sqrt{2 + 7} + 27 \) | \(31 = \sqrt{2 \cdot 7 + 2}! + 7 \) | \(32 = 27 - 2 + 7 \) |
\(33 = ( 7 - 2 ) \cdot 7 - 2 \) | \(34 = \sqrt{27^{2}} + 7 \) | \(35 = \sqrt{27 - 2} \cdot 7 \) | \(36 = 22 + 7 + 7 \) |
\(37 = ( 7 - 2 ) \cdot 7 + 2 \) | \(38 = ( 2 + 2 )! + 7 + 7 \) | \(39 = 2^{7 - 2} + 7 \) | \(40 = ( 27 - 7 ) \cdot 2 \) |
\(41 = 2 \cdot 7 + 27 \) | \(42 = \sqrt{\frac{ 72 }{ 2 }} \cdot 7 \) | \(43 = \frac{ 72 }{ 2 } + 7 \) | \(44 = 7^{2} + 2 - 7 \) |
\(45 = 72 - 27 \) | \(46 = 7^{2} - \sqrt{2 + 7 }\) | \(47 = 27 \cdot 2 - 7 \) | \(48 = ( 7 - 2 )! - 72 \) |
\(49 = ( 2 - 2 + 7 ) \cdot 7 \) | \(50 = \frac{ 2 }{ 2 } + 7 \cdot 7 \) | \(51 = \sqrt{7^{2}} \cdot 7 + 2 \) | \(52 = \sqrt{2 + 7} + 7^{2 }\) |
\(53 = 77 - ( 2 + 2 )!\) | \(54 = 27 + 27 \) | \(55 = 77 - 22 \) | \(56 = 2^{7} - 72 \) |
\(57 = \frac{ 2^{7} }{ 2 } - 7 \) | \(58 = 72 - 2 \cdot 7 \) | \(59 = ?\) | \(60 = \frac{ ( \sqrt{7 \cdot 7} - 2 )! }{ 2 }\) |
\(61 = 27 \cdot 2 + 7 \) | \(62 = ?\) | \(63 = 72 - 2 - 7 \) | \(64 = 2^{( \frac{ 7 }{ 7 } + 2 )!}\) |
\(65 = \sqrt{72^{2}} - 7 \) | \(66 = 72 - \sqrt{2 + 7 }!\) | \(67 = 72 + 2 - 7 \) | \(68 = ( 27 + 7 ) \cdot 2 \) |
\(69 = 72 - \sqrt{2 + 7 }\) | \(70 = ( 7 - 2 ) \cdot 2 \cdot 7 \) | \(71 = 7 \cdot 7 + 22 \) | \(72 = \sqrt{72 \cdot 72 }\) |
\(73 = 77 - 2 - 2 \) | \(74 = ( 2 + 7 )^{2} - 7 \) | \(75 = \sqrt{2 + 7} + 72 \) | \(76 = 7^{2} + 27 \) |
\(77 = 72 - 2 + 7 \) | \(78 = \frac{ 2 }{ 2 } + 77 \) | \(79 = \sqrt{72^{2}} + 7 \) | \(80 = \frac{ \sqrt{2 + 7}!! }{ 2 + 7 }\) |
\(81 = 72 + 2 + 7 \) | \(82 = ?\) | \(83 = ?\) | \(84 = \sqrt{72 \cdot 2} \cdot 7 \) |
\(85 = ?\) | \(86 = 2 \cdot 7 + 72 \) | \(87 = ?\) | \(88 = ( 2 + 7 )^{2} + 7 \) |
\(89 = ?\) | \(90 = ?\) | \(91 = 7^{2} \cdot 2 - 7 \) | \(92 = ?\) |
\(93 = ( 7 - 2 )! - 27 \) | \(94 = ( 7 \cdot 7 - 2 ) \cdot 2 \) | \(95 = ?\) | \(96 = \sqrt{2^{7} \cdot 72 }\) |
\(97 = ?\) | \(98 = \frac{ ( 7 + 7 )^{2} }{ 2 }\) | \(99 = 22 + 77 \) | \(100 = 2 \cdot 7 \cdot 7 + 2 \) |