\(1 = 27 - 26 \) | \(2 = 722 - 6 !\) | \(3 = 7 - \sqrt{22 - 6 }\) | \(4 = \frac{ 22 + 6 }{ 7 }\) |
\(5 = \sqrt{\sqrt{627 - 2 }}\) | \(6 = \frac{ 26 }{ 2 } - 7 \) | \(7 = ( 2 - 2 ) \cdot 6 + 7 \) | \(8 = 72 - 2^{6 }\) |
\(9 = 22 - 6 - 7 \) | \(10 = 72 - 62 \) | \(11 = \sqrt{22 - 6} + 7 \) | \(12 = 26 - 2 \cdot 7 \) |
\(13 = 62 - 7^{2 }\) | \(14 = \frac{ 72 }{ 6 } + 2 \) | \(15 = 27 - 2 \cdot 6 \) | \(16 = ( \frac{ 6 }{ 2 } )^{2} + 7 \) |
\(17 = 26 - 2 - 7 \) | \(18 = \frac{ 72 }{ 6 - 2 }\) | \(19 = 27 - 2 - 6 \) | \(20 = 6 \cdot 7 - 22 \) |
\(21 = 22 + 6 - 7 \) | \(22 = ( 7 - 6 ) \cdot 22 \) | \(23 = 22 - 6 + 7 \) | \(24 = 27 - \frac{ 6 }{ 2 }\) |
\(25 = \sqrt{627 - 2 }\) | \(26 = 2^{7 - 2} - 6 \) | \(27 = 6^{2} - 2 - 7 \) | \(28 = \sqrt{22 - 6} \cdot 7 \) |
\(29 = \sqrt{2 + 7} + 26 \) | \(30 = \frac{ 6 }{ 2 } + 27 \) | \(31 = 26 - 2 + 7 \) | \(32 = 2^{2 \cdot 6 - 7 }\) |
\(33 = \frac{ 72 - 6 }{ 2 }\) | \(34 = ( 2 + 2 ) \cdot 7 + 6 \) | \(35 = 62 - 27 \) | \(36 = 72 - 6^{2 }\) |
\(37 = 2^{6} - 27 \) | \(38 = ( 26 - 7 ) \cdot 2 \) | \(39 = 2 \cdot 6 + 27 \) | \(40 = 2 \cdot 7 + 26 \) |
\(41 = 6^{2} - 2 + 7 \) | \(42 = ( 27 - 6 ) \cdot 2 \) | \(43 = 67 - ( 2 + 2 )!\) | \(44 = ( \frac{ 6 }{ 2 } )! \cdot 7 + 2 \) |
\(45 = 67 - 22 \) | \(46 = 72 - 26 \) | \(47 = 7^{\sqrt{6 - 2}} - 2 \) | \(48 = 27 \cdot 2 - 6 \) |
\(49 = 7^{6 - ( 2 + 2 )}\) | \(50 = 6^{2} + 2 \cdot 7 \) | \(51 = ( 6 - 2 )! + 27 \) | \(52 = 76 - ( 2 + 2 )!\) |
\(53 = 26 + 27 \) | \(54 = 76 - 22 \) | \(55 = \sqrt{62^{2}} - 7 \) | \(56 = \sqrt{62 + 2} \cdot 7 \) |
\(57 = 62 + 2 - 7 \) | \(58 = ( 7 - 2 )! - 62 \) | \(59 = 26 \cdot 2 + 7 \) | \(60 = 27 \cdot 2 + 6 \) |
\(61 = \frac{ 2^{7} - 6 }{ 2 }\) | \(62 = ( ( 6 - 2 )! + 7 ) \cdot 2 \) | \(63 = 6^{2} + 27 \) | \(64 = 6 \cdot 7 + 22 \) |
\(65 = \sqrt{2 + 7} + 62 \) | \(66 = ( 26 + 7 ) \cdot 2 \) | \(67 = 62 - 2 + 7 \) | \(68 = \frac{ 2 }{ 2 } + 67 \) |
\(69 = 72 - \frac{ 6 }{ 2 }\) | \(70 = 72 - \sqrt{6 - 2 }\) | \(71 = 62 + 2 + 7 \) | \(72 = 76 - 2 - 2 \) |
\(73 = 2^{6} + 2 + 7 \) | \(74 = \sqrt{6 - 2} + 72 \) | \(75 = 7^{2} + 26 \) | \(76 = 2 \cdot 7 + 62 \) |
\(77 = \frac{ 2 }{ 2 } + 76 \) | \(78 = \sqrt{2 + 7} \cdot 26 \) | \(79 = 6^{2} \cdot 2 + 7 \) | \(80 = 72 + 2 + 6 \) |
\(81 = \frac{ 27 \cdot 6 }{ 2 }\) | \(82 = 2 \cdot 6 \cdot 7 - 2 \) | \(83 = ?\) | \(84 = 2 \cdot 6 + 72 \) |
\(85 = 6^{2} + 7^{2 }\) | \(86 = ( 6^{2} + 7 ) \cdot 2 \) | \(87 = ( 2 + 7 )^{2} + 6 \) | \(88 = ( 6 \cdot 7 + 2 ) \cdot 2 \) |
\(89 = 22 + 67 \) | \(90 = ( 22 - 7 ) \cdot 6 \) | \(91 = \frac{ 26 }{ 2 } \cdot 7 \) | \(92 = 7^{2} \cdot 2 - 6 \) |
\(93 = ?\) | \(94 = ( 7 - 2 )! - 26 \) | \(95 = ?\) | \(96 = ( 6 - 2 )! + 72 \) |
\(97 = ?\) | \(98 = 22 + 76 \) | \(99 = ?\) | \(100 = ( \frac{ 6! }{ 72 } )^{2 }\) |