\(1 = 57^{2 - 2 }\) | \(2 = 27 - 25 \) | \(3 = \frac{ 22 - 7 }{ 5 }\) | \(4 = 7 - ( \sqrt{25} - 2 )\) |
\(5 = \sqrt{52 - 27 }\) | \(6 = \sqrt{\frac{ 252 }{ 7 }}\) | \(7 = \sqrt{27 \cdot 2 - 5 }\) | \(8 = \sqrt{225} - 7 \) |
\(9 = \frac{ 25 - 7 }{ 2 }\) | \(10 = 22 - 5 - 7 \) | \(11 = \frac{ 22 }{ 7 - 5 }\) | \(12 = \frac{ 72 }{ ( 5 - 2 )! }\) |
\(13 = 5 \cdot 7 - 22 \) | \(14 = \frac{ 72 - 2 }{ 5 }\) | \(15 = \sqrt{( 2 + 7 ) \cdot 25 }\) | \(16 = 25 - 2 - 7 \) |
\(17 = 27 - 2 \cdot 5 \) | \(18 = \sqrt{25}^{2} - 7 \) | \(19 = \frac{ 52 }{ 2 } - 7 \) | \(20 = 72 - 52 \) |
\(21 = ( \sqrt{25} - 2 ) \cdot 7 \) | \(22 = \sqrt{225} + 7 \) | \(23 = \sqrt{522 + 7 }\) | \(24 = 22 - 5 + 7 \) |
\(25 = 52 - 27 \) | \(26 = \frac{ 2^{7} + 2 }{ 5 }\) | \(27 = ( 2 + 2 ) \cdot 5 + 7 \) | \(28 = \sqrt{2 + 7} + 25 \) |
\(29 = ( 5 - 2 )!^{2} - 7 \) | \(30 = 25 - 2 + 7 \) | \(31 = \frac{ 72 }{ 2 } - 5 \) | \(32 = \sqrt{25} + 27 \) |
\(33 = \frac{ 52 }{ 2 } + 7 \) | \(34 = 22 + 5 + 7 \) | \(35 = 57 - 22 \) | \(36 = \frac{ 252 }{ 7 }\) |
\(37 = 2 \cdot 5 + 27 \) | \(38 = 52 - 2 \cdot 7 \) | \(39 = 2 \cdot 7 + 25 \) | \(40 = 72 - 2^{5 }\) |
\(41 = \frac{ 72 }{ 2 } + 5 \) | \(42 = \sqrt{252 \cdot 7 }\) | \(43 = 25 \cdot 2 - 7 \) | \(44 = ( 7 - 5 ) \cdot 22 \) |
\(45 = ( 2 + 7 ) \cdot \sqrt{25 }\) | \(46 = 5! - ( 72 + 2 )\) | \(47 = 72 - 25 \) | \(48 = \sqrt{25}! - 72 \) |
\(49 = 27 \cdot 2 - 5 \) | \(50 = 5! - ( 72 - 2 )\) | \(51 = 75 - ( 2 + 2 )!\) | \(52 = 25 + 27 \) |
\(53 = 75 - 22 \) | \(54 = 7^{2} + \sqrt{25 }\) | \(55 = \sqrt{2 + 7} + 52 \) | \(56 = 57 - \frac{ 2 }{ 2 }\) |
\(57 = 5 \cdot 7 + 22 \) | \(58 = \frac{ 2 }{ 2 } + 57 \) | \(59 = 27 \cdot 2 + 5 \) | \(60 = \sqrt{72 \cdot 2} \cdot 5 \) |
\(61 = 52 + 2 + 7 \) | \(62 = 72 - 2 \cdot 5 \) | \(63 = ( 2 + 2 + 5 ) \cdot 7 \) | \(64 = ( 25 + 7 ) \cdot 2 \) |
\(65 = 72 - 2 - 5 \) | \(66 = 2 \cdot 7 + 52 \) | \(67 = 72 - \sqrt{25 }\) | \(68 = ( 7 - 2 )! - 52 \) |
\(69 = 72 + 2 - 5 \) | \(70 = \sqrt{25} \cdot 2 \cdot 7 \) | \(71 = 75 - 2 - 2 \) | \(72 = 2 \cdot 5 \cdot 7 + 2 \) |
\(73 = \sqrt{( 75 - 2 )^{2 }}\) | \(74 = 7^{2} + 25 \) | \(75 = ( 22 - 7 ) \cdot 5 \) | \(76 = 2^{7} - 52 \) |
\(77 = \sqrt{25} + 72 \) | \(78 = ( 5 - 2 )! + 72 \) | \(79 = 22 + 57 \) | \(80 = ( 2 \cdot 7 + 2 ) \cdot 5 \) |
\(81 = ( 5 - 2 ) \cdot 27 \) | \(82 = 2 \cdot 5 + 72 \) | \(83 = ?\) | \(84 = 5! - \frac{ 72 }{ 2 }\) |
\(85 = \sqrt{7225 }\) | \(86 = ( 2 + 7 )^{2} + 5 \) | \(87 = \frac{ 5! }{ 2 } + 27 \) | \(88 = ( 7^{2} - 5 ) \cdot 2 \) |
\(89 = 5! - ( 2 + 2 )! - 7 \) | \(90 = ( 52 - 7 ) \cdot 2 \) | \(91 = 5! - 22 - 7 \) | \(92 = 5! - ( 2 + 2 ) \cdot 7 \) |
\(93 = \sqrt{25}! - 27 \) | \(94 = ?\) | \(95 = ( 7 - 2 )! - 25 \) | \(96 = ( 5! - 72 ) \cdot 2 \) |
\(97 = 22 + 75 \) | \(98 = ( 2 + 5 ) \cdot 2 \cdot 7 \) | \(99 = ( 2 + 2 )! + 75 \) | \(100 = ( 5 - 2 + 7 )^{2 }\) |