\(1 = \frac{ 25 }{ 25 }\) | \(2 = \frac{ 5! }{ 5 } - 22 \) | \(3 = \frac{ \sqrt{225} }{ 5 }\) | \(4 = 5 - 5^{2 - 2 }\) |
\(5 = \frac{ 25 }{ \sqrt{25 } }\) | \(6 = ( \frac{ \sqrt{225} }{ 5 } )!\) | \(7 = \frac{ 25 }{ 5 } + 2 \) | \(8 = \frac{ 5! }{ \sqrt{225 } }\) |
\(9 = 5 - \frac{ 2 }{ 2 } + 5 \) | \(10 = \sqrt{225} - 5 \) | \(11 = \frac{ 2 }{ 2 } + 5 + 5 \) | \(12 = 22 - 5 - 5 \) |
\(13 = 2^{5 - 2} + 5 \) | \(14 = 2 + 2 + 5 + 5 \) | \(15 = \frac{ 25 + 5 }{ 2 }\) | \(16 = 5! - 52 \cdot 2 \) |
\(17 = 22 - \sqrt{5 \cdot 5 }\) | \(18 = 25 - 2 - 5 \) | \(19 = 25 - ( 5 - 2 )!\) | \(20 = \sqrt{225} + 5 \) |
\(21 = 22 - \frac{ 5 }{ 5 }\) | \(22 = 22 - 5 + 5 \) | \(23 = \frac{ 5 }{ 5 } + 22 \) | \(24 = \frac{ \sqrt{25}! }{ \sqrt{25 } }\) |
\(25 = \sqrt{25 \cdot 25 }\) | \(26 = \frac{ 2 }{ 2 } + 5 \cdot 5 \) | \(27 = 52 - 25 \) | \(28 = 25 - 2 + 5 \) |
\(29 = 2^{5} + 2 - 5 \) | \(30 = \sqrt{25} + 25 \) | \(31 = \frac{ 52 }{ 2 } + 5 \) | \(32 = 22 + 5 + 5 \) |
\(33 = 55 - 22 \) | \(34 = \frac{ 5! - 52 }{ 2 }\) | \(35 = 2 \cdot 5 + 25 \) | \(36 = ( \frac{ 5 }{ 5 } + 2 )!^{2 }\) |
\(37 = 2^{\sqrt{25}} + 5 \) | \(38 = \frac{ 5! }{ 5 - 2 } - 2 \) | \(39 = 2^{5} + 2 + 5 \) | \(40 = ( 25 - 5 ) \cdot 2 \) |
\(41 = ( 5 - 2 )!^{2} + 5 \) | \(42 = 52 - 2 \cdot 5 \) | \(43 = ?\) | \(44 = ( 2 + 5 )^{2} - 5 \) |
\(45 = \frac{ 225 }{ 5 }\) | \(46 = \frac{ 5! }{ 5 } + 22 \) | \(47 = 52 - \sqrt{25 }\) | \(48 = 2 \cdot 5 \cdot 5 - 2 \) |
\(49 = 52 + 2 - 5 \) | \(50 = 25 + 25 \) | \(51 = 55 - 2 - 2 \) | \(52 = \sqrt{52 \cdot 52 }\) |
\(53 = \sqrt{( 55 - 2 )^{2 }}\) | \(54 = 55 - \frac{ 2 }{ 2 }\) | \(55 = 25 \cdot 2 + 5 \) | \(56 = \frac{ 2 }{ 2 } + 55 \) |
\(57 = \sqrt{25} + 52 \) | \(58 = ( 5 - 2 )! + 52 \) | \(59 = 52 + 2 + 5 \) | \(60 = ( 25 + 5 ) \cdot 2 \) |
\(61 = 5! - \frac{ 5! - 2 }{ 2 }\) | \(62 = 2 \cdot 5 + 52 \) | \(63 = \frac{ 5! }{ 2 } - 2 + 5 \) | \(64 = ( 5 - 2 + 5 )^{2 }\) |
\(65 = \frac{ \sqrt{25}! }{ 2 } + 5 \) | \(66 = 5! - ( 52 + 2 )\) | \(67 = \frac{ 5! }{ 2 } + 2 + 5 \) | \(68 = \sqrt{25}! - 52 \) |
\(69 = 2^{5} \cdot 2 + 5 \) | \(70 = 5! - 25 \cdot 2 \) | \(71 = 5! - ( 2 + 5 )^{2 }\) | \(72 = \frac{ \frac{ ( 5 - 2 )!! }{ 2 } }{ 5 }\) |
\(73 = ?\) | \(74 = ( 2^{5} + 5 ) \cdot 2 \) | \(75 = \sqrt{225} \cdot 5 \) | \(76 = \frac{ 2^{5} + 5! }{ 2 }\) |
\(77 = 22 + 55 \) | \(78 = ?\) | \(79 = ( 2 + 2 )! + 55 \) | \(80 = \frac{ 2^{5} }{ 2 } \cdot 5 \) |
\(81 = \sqrt{\sqrt{\sqrt{( 5 - 2 )^{2^{5 }}}}}\) | \(82 = ?\) | \(83 = ?\) | \(84 = 2^{5} + 52 \) |
\(85 = ( 22 - 5 ) \cdot 5 \) | \(86 = \frac{ 52 + 5! }{ 2 }\) | \(87 = ?\) | \(88 = 5! - 2^{\sqrt{25 }}\) |
\(89 = ?\) | \(90 = 5! - ( 2^{5} - 2 )\) | \(91 = 5! - ( ( 2 + 2 )! + 5 )\) | \(92 = 2^{5} + \frac{ 5! }{ 2 }\) |
\(93 = 5! - ( 22 + 5 )\) | \(94 = ( 52 - 5 ) \cdot 2 \) | \(95 = \sqrt{25}! - 25 \) | \(96 = ( 5 - 2 ) \cdot 2^{5 }\) |
\(97 = 5! - ( 25 - 2 )\) | \(98 = ( 5 + 5 )^{2} - 2 \) | \(99 = 52 \cdot 2 - 5 \) | \(100 = ( \sqrt{25} + 5 )^{2 }\) |