2255

\(1 = \frac{ 25 }{ 25 }\) \(2 = \frac{ 5! }{ 5 } - 22 \) \(3 = \frac{ \sqrt{225} }{ 5 }\) \(4 = 5 - 5^{2 - 2 }\)
\(5 = \frac{ 25 }{ \sqrt{25 } }\) \(6 = ( \frac{ \sqrt{225} }{ 5 } )!\) \(7 = \frac{ 25 }{ 5 } + 2 \) \(8 = \frac{ 5! }{ \sqrt{225 } }\)
\(9 = 5 - \frac{ 2 }{ 2 } + 5 \) \(10 = \sqrt{225} - 5 \) \(11 = \frac{ 2 }{ 2 } + 5 + 5 \) \(12 = 22 - 5 - 5 \)
\(13 = 2^{5 - 2} + 5 \) \(14 = 2 + 2 + 5 + 5 \) \(15 = \frac{ 25 + 5 }{ 2 }\) \(16 = 5! - 52 \cdot 2 \)
\(17 = 22 - \sqrt{5 \cdot 5 }\) \(18 = 25 - 2 - 5 \) \(19 = 25 - ( 5 - 2 )!\) \(20 = \sqrt{225} + 5 \)
\(21 = 22 - \frac{ 5 }{ 5 }\) \(22 = 22 - 5 + 5 \) \(23 = \frac{ 5 }{ 5 } + 22 \) \(24 = \frac{ \sqrt{25}! }{ \sqrt{25 } }\)
\(25 = \sqrt{25 \cdot 25 }\) \(26 = \frac{ 2 }{ 2 } + 5 \cdot 5 \) \(27 = 52 - 25 \) \(28 = 25 - 2 + 5 \)
\(29 = 2^{5} + 2 - 5 \) \(30 = \sqrt{25} + 25 \) \(31 = \frac{ 52 }{ 2 } + 5 \) \(32 = 22 + 5 + 5 \)
\(33 = 55 - 22 \) \(34 = \frac{ 5! - 52 }{ 2 }\) \(35 = 2 \cdot 5 + 25 \) \(36 = ( \frac{ 5 }{ 5 } + 2 )!^{2 }\)
\(37 = 2^{\sqrt{25}} + 5 \) \(38 = \frac{ 5! }{ 5 - 2 } - 2 \) \(39 = 2^{5} + 2 + 5 \) \(40 = ( 25 - 5 ) \cdot 2 \)
\(41 = ( 5 - 2 )!^{2} + 5 \) \(42 = 52 - 2 \cdot 5 \) \(43 = ?\) \(44 = ( 2 + 5 )^{2} - 5 \)
\(45 = \frac{ 225 }{ 5 }\) \(46 = \frac{ 5! }{ 5 } + 22 \) \(47 = 52 - \sqrt{25 }\) \(48 = 2 \cdot 5 \cdot 5 - 2 \)
\(49 = 52 + 2 - 5 \) \(50 = 25 + 25 \) \(51 = 55 - 2 - 2 \) \(52 = \sqrt{52 \cdot 52 }\)
\(53 = \sqrt{( 55 - 2 )^{2 }}\) \(54 = 55 - \frac{ 2 }{ 2 }\) \(55 = 25 \cdot 2 + 5 \) \(56 = \frac{ 2 }{ 2 } + 55 \)
\(57 = \sqrt{25} + 52 \) \(58 = ( 5 - 2 )! + 52 \) \(59 = 52 + 2 + 5 \) \(60 = ( 25 + 5 ) \cdot 2 \)
\(61 = 5! - \frac{ 5! - 2 }{ 2 }\) \(62 = 2 \cdot 5 + 52 \) \(63 = \frac{ 5! }{ 2 } - 2 + 5 \) \(64 = ( 5 - 2 + 5 )^{2 }\)
\(65 = \frac{ \sqrt{25}! }{ 2 } + 5 \) \(66 = 5! - ( 52 + 2 )\) \(67 = \frac{ 5! }{ 2 } + 2 + 5 \) \(68 = \sqrt{25}! - 52 \)
\(69 = 2^{5} \cdot 2 + 5 \) \(70 = 5! - 25 \cdot 2 \) \(71 = 5! - ( 2 + 5 )^{2 }\) \(72 = \frac{ \frac{ ( 5 - 2 )!! }{ 2 } }{ 5 }\)
\(73 = ?\) \(74 = ( 2^{5} + 5 ) \cdot 2 \) \(75 = \sqrt{225} \cdot 5 \) \(76 = \frac{ 2^{5} + 5! }{ 2 }\)
\(77 = 22 + 55 \) \(78 = ?\) \(79 = ( 2 + 2 )! + 55 \) \(80 = \frac{ 2^{5} }{ 2 } \cdot 5 \)
\(81 = \sqrt{\sqrt{\sqrt{( 5 - 2 )^{2^{5 }}}}}\) \(82 = ?\) \(83 = ?\) \(84 = 2^{5} + 52 \)
\(85 = ( 22 - 5 ) \cdot 5 \) \(86 = \frac{ 52 + 5! }{ 2 }\) \(87 = ?\) \(88 = 5! - 2^{\sqrt{25 }}\)
\(89 = ?\) \(90 = 5! - ( 2^{5} - 2 )\) \(91 = 5! - ( ( 2 + 2 )! + 5 )\) \(92 = 2^{5} + \frac{ 5! }{ 2 }\)
\(93 = 5! - ( 22 + 5 )\) \(94 = ( 52 - 5 ) \cdot 2 \) \(95 = \sqrt{25}! - 25 \) \(96 = ( 5 - 2 ) \cdot 2^{5 }\)
\(97 = 5! - ( 25 - 2 )\) \(98 = ( 5 + 5 )^{2} - 2 \) \(99 = 52 \cdot 2 - 5 \) \(100 = ( \sqrt{25} + 5 )^{2 }\)