\(1 = \frac{ 24 }{ 8 } - 2 \) | \(2 = \sqrt{28 - 24 }\) | \(3 = \frac{ 22 }{ \sqrt{4} } - 8 \) | \(4 = 28 - 24 \) |
\(5 = \frac{ 24 }{ 8 } + 2 \) | \(6 = \frac{ 24 \cdot 2 }{ 8 }\) | \(7 = \frac{ 42 }{ 8 - 2 }\) | \(8 = 2^{\frac{ 24 }{ 8 }}\) |
\(9 = ( \frac{ 24 }{ 8 } )^{2 }\) | \(10 = 22 - 4 - 8 \) | \(11 = \frac{ 22 \cdot 4 }{ 8 }\) | \(12 = \frac{ 28 - 4 }{ 2 }\) |
\(13 = \frac{ 42 }{ 2 } - 8 \) | \(14 = 42 - 28 \) | \(15 = \frac{ 22 + 8 }{ \sqrt{4 } }\) | \(16 = \frac{ 24 + 8 }{ 2 }\) |
\(17 = \frac{ 42 - 8 }{ 2 }\) | \(18 = 22 + 4 - 8 \) | \(19 = \frac{ 22 }{ \sqrt{4} } + 8 \) | \(20 = 22 - \frac{ 8 }{ 4 }\) |
\(21 = \frac{ 82 + 2 }{ 4 }\) | \(22 = \sqrt{482 + 2 }\) | \(23 = \frac{ 48 - 2 }{ 2 }\) | \(24 = ( 28 - 24 )!\) |
\(25 = \frac{ 42 + 8 }{ 2 }\) | \(26 = 48 - 22 \) | \(27 = 28 - \frac{ 2 }{ \sqrt{4 } }\) | \(28 = \frac{ 224 }{ 8 }\) |
\(29 = \frac{ 42 }{ 2 } + 8 \) | \(30 = 24 - 2 + 8 \) | \(31 = 4 \cdot 8 - \frac{ 2 }{ 2 }\) | \(32 = ( 24 - 8 ) \cdot 2 \) |
\(33 = \frac{ 2 }{ 2 } + 4 \cdot 8 \) | \(34 = 22 + 4 + 8 \) | \(35 = \frac{ 8! }{ 4!^{2} \cdot 2 }\) | \(36 = 2 \cdot 4 + 28 \) |
\(37 = \frac{ 82 }{ 2 } - 4 \) | \(38 = 42 - \frac{ 8 }{ 2 }\) | \(39 = \frac{ 82 - 4 }{ 2 }\) | \(40 = 82 - 42 \) |
\(41 = \frac{ 82 \cdot 2 }{ 4 }\) | \(42 = 8^{\sqrt{4}} - 22 \) | \(43 = \frac{ 82 + 4 }{ 2 }\) | \(44 = \sqrt{242 \cdot 8 }\) |
\(45 = \frac{ 82 }{ 2 } + 4 \) | \(46 = \frac{ 8 }{ 2 } + 42 \) | \(47 = 48 - \frac{ 2 }{ 2 }\) | \(48 = ( 28 - 4 ) \cdot 2 \) |
\(49 = ( \frac{ 28 }{ 4 } )^{2 }\) | \(50 = 28 - 2 + 4 !\) | \(51 = ?\) | \(52 = 24 + 28 \) |
\(53 = \frac{ 82 + 4! }{ 2 }\) | \(54 = 4 \cdot 8 + 22 \) | \(55 = ?\) | \(56 = ( 22 - 8 ) \cdot 4 \) |
\(57 = \frac{ 228 }{ 4 }\) | \(58 = 82 - 24 \) | \(59 = ?\) | \(60 = 28 \cdot 2 + 4 \) |
\(61 = ?\) | \(62 = 84 - 22 \) | \(63 = 8^{\sqrt{4}} - \frac{ 2 }{ 2 }\) | \(64 = ( 24 + 8 ) \cdot 2 \) |
\(65 = \frac{ 82 }{ 2 } + 4 !\) | \(66 = 82 - 2^{4 }\) | \(67 = ?\) | \(68 = ( 42 - 8 ) \cdot 2 \) |
\(69 = ?\) | \(70 = 22 + 48 \) | \(71 = \frac{ \sqrt{\frac{ 8! }{ 2 } + 4} }{ 2 }\) | \(72 = \frac{ 24^{2} }{ 8 }\) |
\(73 = ?\) | \(74 = 82 - 2 \cdot 4 \) | \(75 = ?\) | \(76 = 42 \cdot 2 - 8 \) |
\(77 = ?\) | \(78 = 82 - 2 - \sqrt{4 }\) | \(79 = ?\) | \(80 = 22 \cdot 4 - 8 \) |
\(81 = 82 - \frac{ 2 }{ \sqrt{4 } }\) | \(82 = \frac{ 82 }{ 2 } \cdot \sqrt{4 }\) | \(83 = 84 - \frac{ 2 }{ 2 }\) | \(84 = 82 - 2 + 4 \) |
\(85 = \frac{ 2 }{ 2 } + 84 \) | \(86 = 8^{\sqrt{4}} + 22 \) | \(87 = ?\) | \(88 = ( 8 - 4 ) \cdot 22 \) |
\(89 = ?\) | \(90 = 2 \cdot 4 + 82 \) | \(91 = ?\) | \(92 = 42 \cdot 2 + 8 \) |
\(93 = ?\) | \(94 = 48 \cdot 2 - 2 \) | \(95 = \frac{ 4! \cdot 8 - 2 }{ 2 }\) | \(96 = 22 \cdot 4 + 8 \) |
\(97 = \frac{ 4! \cdot 8 + 2 }{ 2 }\) | \(98 = 48 \cdot 2 + 2 \) | \(99 = ?\) | \(100 = ( 42 + 8 ) \cdot 2 \) |