\(1 = 47^{2 - 2 }\) | \(2 = \frac{ 22 }{ 4 + 7 }\) | \(3 = 27 - 24 \) | \(4 = \frac{ 42 }{ 7 } - 2 \) |
\(5 = \sqrt{47 - 22 }\) | \(6 = ( 27 - 24 )!\) | \(7 = 7^{2} - 42 \) | \(8 = \frac{ 42 }{ 7 } + 2 \) |
\(9 = \frac{ \frac{ 72 }{ 2 } }{ 4 }\) | \(10 = 24 - 2 \cdot 7 \) | \(11 = 22 - 4 - 7 \) | \(12 = \frac{ 42 \cdot 2 }{ 7 }\) |
\(13 = 22 - \sqrt{4} - 7 \) | \(14 = \frac{ 42 }{ 2 } - 7 \) | \(15 = 42 - 27 \) | \(16 = \frac{ 72 }{ 4 } - 2 \) |
\(17 = 22 + \sqrt{4} - 7 \) | \(18 = \frac{ 22 }{ \sqrt{4} } + 7 \) | \(19 = 22 + 4 - 7 \) | \(20 = \frac{ 72 }{ 4 } + 2 \) |
\(21 = 27 - 2 - 4 \) | \(22 = ( 2 + 7 ) \cdot 2 + 4 \) | \(23 = 27 - 2 - \sqrt{4 }\) | \(24 = ( \frac{ 42 }{ 7 } - 2 )!\) |
\(25 = 47 - 22 \) | \(26 = 27 - \frac{ 2 }{ \sqrt{4 } }\) | \(27 = 22 - \sqrt{4} + 7 \) | \(28 = \frac{ 42 }{ 2 } + 7 \) |
\(29 = 24 - 2 + 7 \) | \(30 = 72 - 42 \) | \(31 = 22 + \sqrt{4} + 7 \) | \(32 = \frac{ 224 }{ 7 }\) |
\(33 = 22 + 4 + 7 \) | \(34 = ( 24 - 7 ) \cdot 2 \) | \(35 = 2 \cdot 4 + 27 \) | \(36 = ( \frac{ 42 }{ 7 } )^{2 }\) |
\(37 = 42 + 2 - 7 \) | \(38 = 2 \cdot 7 + 24 \) | \(39 = \frac{ 74 }{ 2 } + 2 \) | \(40 = \frac{ 72 }{ 2 } + 4 \) |
\(41 = 24 \cdot 2 - 7 \) | \(42 = ( 2 \cdot 4 - 2 ) \cdot 7 \) | \(43 = 2^{4} + 27 \) | \(44 = ( 2 + 2 + 7 ) \cdot 4 \) |
\(45 = \sqrt{2 + 7} + 42 \) | \(46 = ( 27 - 4 ) \cdot 2 \) | \(47 = 42 - 2 + 7 \) | \(48 = 72 - 24 \) |
\(49 = 7^{4! - 22 }\) | \(50 = 4 \cdot 7 + 22 \) | \(51 = 24 + 27 \) | \(52 = 74 - 22 \) |
\(53 = 22 + 4! + 7 \) | \(54 = \frac{ 27 \cdot 4 }{ 2 }\) | \(55 = 24 \cdot 2 + 7 \) | \(56 = 2 \cdot 7 + 42 \) |
\(57 = 2^{2 + 4} - 7 \) | \(58 = 27 \cdot 2 + 4 \) | \(59 = ( 2 + 4! ) \cdot 2 + 7 \) | \(60 = ( 22 - 7 ) \cdot 4 \) |
\(61 = \frac{ 4! }{ 2 } + 7^{2 }\) | \(62 = ( 24 + 7 ) \cdot 2 \) | \(63 = \frac{ 2^{7} - 2 }{ \sqrt{4 } }\) | \(64 = 2^{\frac{ 42 }{ 7 }}\) |
\(65 = 2^{4} + 7^{2 }\) | \(66 = ( 7 - 4 ) \cdot 22 \) | \(67 = \sqrt{\frac{ 2 }{ 2 } + 7!} - 4 \) | \(68 = \frac{ 272 }{ 4 }\) |
\(69 = 22 + 47 \) | \(70 = ( 42 - 7 ) \cdot 2 \) | \(71 = 7^{\sqrt{4}} + 22 \) | \(72 = \sqrt{2 + 7} \cdot 24 \) |
\(73 = 7^{2} + 24 \) | \(74 = 72 - 2 + 4 \) | \(75 = \frac{ 2 }{ 2 } + 74 \) | \(76 = \sqrt{72^{2}} + 4 \) |
\(77 = 42 \cdot 2 - 7 \) | \(78 = 72 + 2 + 4 \) | \(79 = ( 2 + 7 )^{2} - \sqrt{4 }\) | \(80 = 2 \cdot 4 + 72 \) |
\(81 = 22 \cdot 4 - 7 \) | \(82 = \frac{ 4!^{2} - 2 }{ 7 }\) | \(83 = ( 2 + 7 )^{2} + \sqrt{4 }\) | \(84 = \frac{ 24 }{ 2 } \cdot 7 \) |
\(85 = ( 2 + 7 )^{2} + 4 \) | \(86 = 2^{7} - 42 \) | \(87 = ?\) | \(88 = 2^{4} + 72 \) |
\(89 = ( 2 + 2 ) \cdot 4! - 7 \) | \(90 = ( 47 - 2 ) \cdot 2 \) | \(91 = 42 \cdot 2 + 7 \) | \(92 = 47 \cdot 2 - 2 \) |
\(93 = ?\) | \(94 = \sqrt{47^{2}} \cdot 2 \) | \(95 = 22 \cdot 4 + 7 \) | \(96 = 22 + 74 \) |
\(97 = 2 \cdot 4! + 7^{2 }\) | \(98 = ( 42 + 7 ) \cdot 2 \) | \(99 = ?\) | \(100 = ( 27 - 2 ) \cdot 4 \) |