2247

\(1 = 47^{2 - 2 }\) \(2 = \frac{ 22 }{ 4 + 7 }\) \(3 = 27 - 24 \) \(4 = \frac{ 42 }{ 7 } - 2 \)
\(5 = \sqrt{47 - 22 }\) \(6 = ( 27 - 24 )!\) \(7 = 7^{2} - 42 \) \(8 = \frac{ 42 }{ 7 } + 2 \)
\(9 = \frac{ \frac{ 72 }{ 2 } }{ 4 }\) \(10 = 24 - 2 \cdot 7 \) \(11 = 22 - 4 - 7 \) \(12 = \frac{ 42 \cdot 2 }{ 7 }\)
\(13 = 22 - \sqrt{4} - 7 \) \(14 = \frac{ 42 }{ 2 } - 7 \) \(15 = 42 - 27 \) \(16 = \frac{ 72 }{ 4 } - 2 \)
\(17 = 22 + \sqrt{4} - 7 \) \(18 = \frac{ 22 }{ \sqrt{4} } + 7 \) \(19 = 22 + 4 - 7 \) \(20 = \frac{ 72 }{ 4 } + 2 \)
\(21 = 27 - 2 - 4 \) \(22 = ( 2 + 7 ) \cdot 2 + 4 \) \(23 = 27 - 2 - \sqrt{4 }\) \(24 = ( \frac{ 42 }{ 7 } - 2 )!\)
\(25 = 47 - 22 \) \(26 = 27 - \frac{ 2 }{ \sqrt{4 } }\) \(27 = 22 - \sqrt{4} + 7 \) \(28 = \frac{ 42 }{ 2 } + 7 \)
\(29 = 24 - 2 + 7 \) \(30 = 72 - 42 \) \(31 = 22 + \sqrt{4} + 7 \) \(32 = \frac{ 224 }{ 7 }\)
\(33 = 22 + 4 + 7 \) \(34 = ( 24 - 7 ) \cdot 2 \) \(35 = 2 \cdot 4 + 27 \) \(36 = ( \frac{ 42 }{ 7 } )^{2 }\)
\(37 = 42 + 2 - 7 \) \(38 = 2 \cdot 7 + 24 \) \(39 = \frac{ 74 }{ 2 } + 2 \) \(40 = \frac{ 72 }{ 2 } + 4 \)
\(41 = 24 \cdot 2 - 7 \) \(42 = ( 2 \cdot 4 - 2 ) \cdot 7 \) \(43 = 2^{4} + 27 \) \(44 = ( 2 + 2 + 7 ) \cdot 4 \)
\(45 = \sqrt{2 + 7} + 42 \) \(46 = ( 27 - 4 ) \cdot 2 \) \(47 = 42 - 2 + 7 \) \(48 = 72 - 24 \)
\(49 = 7^{4! - 22 }\) \(50 = 4 \cdot 7 + 22 \) \(51 = 24 + 27 \) \(52 = 74 - 22 \)
\(53 = 22 + 4! + 7 \) \(54 = \frac{ 27 \cdot 4 }{ 2 }\) \(55 = 24 \cdot 2 + 7 \) \(56 = 2 \cdot 7 + 42 \)
\(57 = 2^{2 + 4} - 7 \) \(58 = 27 \cdot 2 + 4 \) \(59 = ( 2 + 4! ) \cdot 2 + 7 \) \(60 = ( 22 - 7 ) \cdot 4 \)
\(61 = \frac{ 4! }{ 2 } + 7^{2 }\) \(62 = ( 24 + 7 ) \cdot 2 \) \(63 = \frac{ 2^{7} - 2 }{ \sqrt{4 } }\) \(64 = 2^{\frac{ 42 }{ 7 }}\)
\(65 = 2^{4} + 7^{2 }\) \(66 = ( 7 - 4 ) \cdot 22 \) \(67 = \sqrt{\frac{ 2 }{ 2 } + 7!} - 4 \) \(68 = \frac{ 272 }{ 4 }\)
\(69 = 22 + 47 \) \(70 = ( 42 - 7 ) \cdot 2 \) \(71 = 7^{\sqrt{4}} + 22 \) \(72 = \sqrt{2 + 7} \cdot 24 \)
\(73 = 7^{2} + 24 \) \(74 = 72 - 2 + 4 \) \(75 = \frac{ 2 }{ 2 } + 74 \) \(76 = \sqrt{72^{2}} + 4 \)
\(77 = 42 \cdot 2 - 7 \) \(78 = 72 + 2 + 4 \) \(79 = ( 2 + 7 )^{2} - \sqrt{4 }\) \(80 = 2 \cdot 4 + 72 \)
\(81 = 22 \cdot 4 - 7 \) \(82 = \frac{ 4!^{2} - 2 }{ 7 }\) \(83 = ( 2 + 7 )^{2} + \sqrt{4 }\) \(84 = \frac{ 24 }{ 2 } \cdot 7 \)
\(85 = ( 2 + 7 )^{2} + 4 \) \(86 = 2^{7} - 42 \) \(87 = ?\) \(88 = 2^{4} + 72 \)
\(89 = ( 2 + 2 ) \cdot 4! - 7 \) \(90 = ( 47 - 2 ) \cdot 2 \) \(91 = 42 \cdot 2 + 7 \) \(92 = 47 \cdot 2 - 2 \)
\(93 = ?\) \(94 = \sqrt{47^{2}} \cdot 2 \) \(95 = 22 \cdot 4 + 7 \) \(96 = 22 + 74 \)
\(97 = 2 \cdot 4! + 7^{2 }\) \(98 = ( 42 + 7 ) \cdot 2 \) \(99 = ?\) \(100 = ( 27 - 2 ) \cdot 4 \)