\(1 = 46^{2 - 2 }\) | \(2 = 26 - 24 \) | \(3 = \frac{ 22 - 4 }{ 6 }\) | \(4 = \sqrt{42 - 26 }\) |
\(5 = \frac{ 42 }{ 6 } - 2 \) | \(6 = \frac{ 24 }{ 2 } - 6 \) | \(7 = \frac{ 22 + 6 }{ 4 }\) | \(8 = \frac{ 24 \cdot 2 }{ 6 }\) |
\(9 = \frac{ 24 - 6 }{ 2 }\) | \(10 = 26 - 2^{4 }\) | \(11 = \frac{ 22 }{ 6 - 4 }\) | \(12 = 22 - 4 - 6 \) |
\(13 = \frac{ 26 \cdot 2 }{ 4 }\) | \(14 = 22 - \sqrt{64 }\) | \(15 = \frac{ 24 + 6 }{ 2 }\) | \(16 = 42 - 26 \) |
\(17 = \frac{ 26 }{ 2 } + 4 \) | \(18 = \frac{ 24 }{ 2 } + 6 \) | \(19 = 22 - \frac{ 6 }{ \sqrt{4 } }\) | \(20 = 62 - 42 \) |
\(21 = 24 - \frac{ 6 }{ 2 }\) | \(22 = 2^{6} - 42 \) | \(23 = \sqrt{( \frac{ 46 }{ 2 } )^{2 }}\) | \(24 = 46 - 22 \) |
\(25 = \frac{ 46 }{ 2 } + 2 \) | \(26 = 22 - \sqrt{4} + 6 \) | \(27 = \frac{ 6 }{ 2 } + 24 \) | \(28 = 24 - 2 + 6 \) |
\(29 = \frac{ 62 - 4 }{ 2 }\) | \(30 = 22 + \sqrt{64 }\) | \(31 = \frac{ 62 \cdot 2 }{ 4 }\) | \(32 = 22 + 4 + 6 \) |
\(33 = \frac{ 22 \cdot 6 }{ 4 }\) | \(34 = 2 \cdot 4 + 26 \) | \(35 = \frac{ 62 }{ 2 } + 4 \) | \(36 = ( 24 - 6 ) \cdot 2 \) |
\(37 = \frac{ 26 }{ 2 } + 4 !\) | \(38 = 62 - 24 \) | \(39 = 42 - \frac{ 6 }{ 2 }\) | \(40 = 2^{6} - 24 \) |
\(41 = ?\) | \(42 = 64 - 22 \) | \(43 = \frac{ 62 + 4! }{ 2 }\) | \(44 = ( 6 - 4 ) \cdot 22 \) |
\(45 = \frac{ 6 }{ 2 } + 42 \) | \(46 = 4 \cdot 6 + 22 \) | \(47 = \frac{ 2 }{ 2 } + 46 \) | \(48 = 26 \cdot 2 - 4 \) |
\(49 = ( \frac{ 42 }{ 6 } )^{2 }\) | \(50 = 24 + 26 \) | \(51 = 2 \cdot 4! + \frac{ 6 }{ 2 }\) | \(52 = \frac{ 26 }{ 2 } \cdot 4 \) |
\(53 = ?\) | \(54 = 24 \cdot 2 + 6 \) | \(55 = \frac{ 62 }{ 2 } + 4 !\) | \(56 = 26 \cdot 2 + 4 \) |
\(57 = ?\) | \(58 = 6^{\sqrt{4}} + 22 \) | \(59 = ?\) | \(60 = ( 24 + 6 ) \cdot 2 \) |
\(61 = 62 - \frac{ 2 }{ \sqrt{4 } }\) | \(62 = \frac{ 62 }{ 2 } \cdot \sqrt{4 }\) | \(63 = 64 - \frac{ 2 }{ 2 }\) | \(64 = ( 22 - 6 ) \cdot 4 \) |
\(65 = \frac{ 2 }{ 2 } + 64 \) | \(66 = \frac{ 22 }{ \sqrt{4} } \cdot 6 \) | \(67 = \sqrt{\sqrt{2^{4!}}} + \frac{ 6 }{ 2 }\) | \(68 = 22 + 46 \) |
\(69 = ?\) | \(70 = 2 \cdot 4 + 62 \) | \(71 = \frac{ 4! \cdot 6 - 2 }{ 2 }\) | \(72 = \frac{ 24 }{ 2 } \cdot 6 \) |
\(73 = \frac{ 4! \cdot 6 + 2 }{ 2 }\) | \(74 = 2 \cdot 4! + 26 \) | \(75 = ?\) | \(76 = 26 \cdot 2 + 4 !\) |
\(77 = ?\) | \(78 = 42 \cdot 2 - 6 \) | \(79 = ( \frac{ 6 }{ 2 } )^{4} - 2 \) | \(80 = ( 6^{2} + 4 ) \cdot 2 \) |
\(81 = ( \frac{ 6^{2} }{ 4 } )^{2 }\) | \(82 = 22 \cdot 4 - 6 \) | \(83 = ( \frac{ 6 }{ 2 } )^{4} + 2 \) | \(84 = \sqrt{6 - 2} \cdot 42 \) |
\(85 = ?\) | \(86 = 22 + 64 \) | \(87 = ?\) | \(88 = 2^{6} + 24 \) |
\(89 = \frac{ \frac{ 6! }{ 4 } - 2 }{ 2 }\) | \(90 = 42 \cdot 2 + 6 \) | \(91 = \frac{ \frac{ 6! }{ 4 } + 2 }{ 2 }\) | \(92 = \sqrt{46^{2}} \cdot 2 \) |
\(93 = ?\) | \(94 = 22 \cdot 4 + 6 \) | \(95 = ?\) | \(96 = \frac{ 24^{2} }{ 6 }\) |
\(97 = ?\) | \(98 = 2^{4} \cdot 6 + 2 \) | \(99 = ?\) | \(100 = ( 26 + 4! ) \cdot 2 \) |