2245

\(1 = 25 - 24 \) \(2 = 22 - 4 \cdot 5 \) \(3 = 5 - ( 4! - 22 )\) \(4 = \sqrt{\sqrt{252 + 4 }}\)
\(5 = \frac{ \sqrt{25}! }{ 24 }\) \(6 = \frac{ 42 }{ 2 + 5 }\) \(7 = \sqrt{24 + 25 }\) \(8 = \frac{ 24 }{ 5 - 2 }\)
\(9 = 25 - 2^{4 }\) \(10 = 52 - 42 \) \(11 = \sqrt{225} - 4 \) \(12 = 22 - \sqrt{4} \cdot 5 \)
\(13 = 22 - 4 - 5 \) \(14 = 24 - 2 \cdot 5 \) \(15 = \frac{ 52 }{ 4 } + 2 \) \(16 = \sqrt{252 + 4 }\)
\(17 = 42 - 25 \) \(18 = 24 - ( 5 - 2 )!\) \(19 = \sqrt{225} + 4 \) \(20 = \sqrt{25 \cdot 4} \cdot 2 \)
\(21 = 22 + 4 - 5 \) \(22 = ( 5 - 4 ) \cdot 22 \) \(23 = 45 - 22 \) \(24 = \frac{ 52 - 4 }{ 2 }\)
\(25 = \frac{ 54 }{ 2 } - 2 \) \(26 = \frac{ 42 }{ 2 } + 5 \) \(27 = 24 - 2 + 5 \) \(28 = 52 - 24 \)
\(29 = 24 + \sqrt{25 }\) \(30 = \sqrt{225 \cdot 4 }\) \(31 = 22 + 4 + 5 \) \(32 = 54 - 22 \)
\(33 = 2 \cdot 4 + 25 \) \(34 = 2 \cdot 5 + 24 \) \(35 = 42 - 2 - 5 \) \(36 = 52 - 2^{4 }\)
\(37 = 42 - \sqrt{25 }\) \(38 = ( 24 - 5 ) \cdot 2 \) \(39 = \sqrt{225} + 4 !\) \(40 = \sqrt{25} \cdot 2 \cdot 4 \)
\(41 = 2^{4} + 25 \) \(42 = 4 \cdot 5 + 22 \) \(43 = 24 \cdot 2 - 5 \) \(44 = 45 - \frac{ 2 }{ 2 }\)
\(45 = 42 - 2 + 5 \) \(46 = 25 \cdot 2 - 4 \) \(47 = \sqrt{25} + 42 \) \(48 = \frac{ 5! - 24 }{ 2 }\)
\(49 = 24 + 25 \) \(50 = \frac{ 25 \cdot 4 }{ 2 }\) \(51 = 22 + 4! + 5 \) \(52 = 2 \cdot 5 + 42 \)
\(53 = 24 \cdot 2 + 5 \) \(54 = 25 \cdot 2 + 4 \) \(55 = \frac{ 2 }{ 2 } + 54 \) \(56 = 2^{5} + 24 \)
\(57 = ( 2 + 4! ) \cdot 2 + 5 \) \(58 = ( 24 + 5 ) \cdot 2 \) \(59 = 2^{2 + 4} - 5 \) \(60 = \sqrt{225} \cdot 4 \)
\(61 = \frac{ ( 2 + 5! ) \cdot 2 }{ 4 }\) \(62 = 4^{5 - 2} - 2 \) \(63 = \frac{ 252 }{ 4 }\) \(64 = 4^{\sqrt{25} - 2 }\)
\(65 = \sqrt{4225 }\) \(66 = ( 5 - \sqrt{4} ) \cdot 22 \) \(67 = 22 + 45 \) \(68 = ( 22 - 5 ) \cdot 4 \)
\(69 = ( 2 + 2 )! + 45 \) \(70 = ( 2^{4} - 2 ) \cdot 5 \) \(71 = \frac{ 22 + 5! }{ \sqrt{4 } }\) \(72 = ( 5 - 2 ) \cdot 24 \)
\(73 = 2 \cdot 4! + 25 \) \(74 = ( 42 - 5 ) \cdot 2 \) \(75 = ?\) \(76 = 22 + 54 \)
\(77 = ?\) \(78 = \sqrt{25}! - 42 \) \(79 = 42 \cdot 2 - 5 \) \(80 = 2^{4} \cdot \sqrt{25 }\)
\(81 = ( \sqrt{25} - 2 )^{4 }\) \(82 = 2^{4} \cdot 5 + 2 \) \(83 = 22 \cdot 4 - 5 \) \(84 = \frac{ 5! }{ 2 } + 24 \)
\(85 = \frac{ 2 + 5! }{ 2 } + 4 !\) \(86 = ( 45 - 2 ) \cdot 2 \) \(87 = ?\) \(88 = 45 \cdot 2 - 2 \)
\(89 = 42 \cdot 2 + 5 \) \(90 = ( 22 - 4 ) \cdot 5 \) \(91 = ( 2 + 2 ) \cdot 4! - 5 \) \(92 = ( 25 - 2 ) \cdot 4 \)
\(93 = 22 \cdot 4 + 5 \) \(94 = 42 + 52 \) \(95 = 5! - ( \frac{ 2 }{ 2 } + 4 ! )\) \(96 = ( 52 - 4 ) \cdot 2 \)
\(97 = 5! - ( 4! - \frac{ 2 }{ 2 } )\) \(98 = 25 \cdot 4 - 2 \) \(99 = 5! - \frac{ 42 }{ 2 }\) \(100 = 52 \cdot 2 - 4 \)