\(1 = 22 - 3 \cdot 7 \) | \(2 = \sqrt{27 - 23 }\) | \(3 = \frac{ 23 - 2 }{ 7 }\) | \(4 = 27 - 23 \) |
\(5 = 32 - 27 \) | \(6 = ( \frac{ 23 - 2 }{ 7 } )!\) | \(7 = \sqrt{72 - 23 }\) | \(8 = \frac{ 23 - 7 }{ 2 }\) |
\(9 = 23 - 2 \cdot 7 \) | \(10 = \sqrt{32 - 7} \cdot 2 \) | \(11 = \frac{ 27 }{ 3 } + 2 \) | \(12 = 22 - 3 - 7 \) |
\(13 = 37 - ( 2 + 2 )!\) | \(14 = 23 - 2 - 7 \) | \(15 = 37 - 22 \) | \(16 = \sqrt{23^{2}} - 7 \) |
\(17 = 7^{2} - 32 \) | \(18 = 22 + 3 - 7 \) | \(19 = 27 - 2^{3 }\) | \(20 = 22 - \sqrt{7 - 3 }\) |
\(21 = 27 - 2 \cdot 3 \) | \(22 = 27 - 2 - 3 \) | \(23 = \frac{ 32 }{ 2 } + 7 \) | \(24 = ( 27 - 23 )!\) |
\(25 = \sqrt{32^{2}} - 7 \) | \(26 = 22 - 3 + 7 \) | \(27 = ( 3 - 2 ) \cdot 27 \) | \(28 = 23 - 2 + 7 \) |
\(29 = 32 - \sqrt{2 + 7 }\) | \(30 = \sqrt{23^{2}} + 7 \) | \(31 = 27 - 2 + 3 !\) | \(32 = 22 + 3 + 7 \) |
\(33 = 2 \cdot 3 + 27 \) | \(34 = ( 2 \cdot 7 + 3 ) \cdot 2 \) | \(35 = 2^{3} + 27 \) | \(36 = 3^{2} + 27 \) |
\(37 = 2 \cdot 7 + 23 \) | \(38 = \frac{ 2 }{ 2 } + 37 \) | \(39 = 23 \cdot 2 - 7 \) | \(40 = 72 - 32 \) |
\(41 = 32 + 2 + 7 \) | \(42 = ( 27 - 3! ) \cdot 2 \) | \(43 = 3 \cdot 7 + 22 \) | \(44 = \sqrt{7 - 3} \cdot 22 \) |
\(45 = ( 22 - 7 ) \cdot 3 \) | \(46 = \frac{ 322 }{ 7 }\) | \(47 = \sqrt{3^{7} + 22 }\) | \(48 = \sqrt{32 \cdot 72 }\) |
\(49 = 72 - 23 \) | \(50 = 23 + 27 \) | \(51 = 73 - 22 \) | \(52 = 7^{\sqrt{2 + 2}} + 3 \) |
\(53 = 23 \cdot 2 + 7 \) | \(54 = ( 2 + 7 ) \cdot 2 \cdot 3 \) | \(55 = 2 \cdot 3 + 7^{2 }\) | \(56 = \sqrt{32 \cdot 2} \cdot 7 \) |
\(57 = 27 \cdot 2 + 3 \) | \(58 = 2^{3} \cdot 7 + 2 \) | \(59 = 22 + 37 \) | \(60 = ( 23 + 7 ) \cdot 2 \) |
\(61 = ( 2 + 2 )! + 37 \) | \(62 = ( ( 3! - 2 )! + 7 ) \cdot 2 \) | \(63 = 72 - 3^{2 }\) | \(64 = 72 - 2^{3 }\) |
\(65 = 3^{2} \cdot 7 + 2 \) | \(66 = 72 - 2 \cdot 3 \) | \(67 = 72 - 2 - 3 \) | \(68 = 72 + 2 - 3 !\) |
\(69 = 73 - 2 - 2 \) | \(70 = ( 37 - 2 ) \cdot 2 \) | \(71 = 32 \cdot 2 + 7 \) | \(72 = 7^{2} + 23 \) |
\(73 = 22 \cdot 3 + 7 \) | \(74 = \frac{ 2 }{ 2 } + 73 \) | \(75 = ( 27 - 2 ) \cdot 3 \) | \(76 = 37 \cdot 2 + 2 \) |
\(77 = 72 + 2 + 3 \) | \(78 = ( 32 + 7 ) \cdot 2 \) | \(79 = 27 \cdot 3 - 2 \) | \(80 = 2^{3} + 72 \) |
\(81 = ( \frac{ 27 }{ 3 } )^{2 }\) | \(82 = 2 \cdot 3! \cdot 7 - 2 \) | \(83 = 27 \cdot 3 + 2 \) | \(84 = 2 \cdot 3! + 72 \) |
\(85 = 3!^{2} + 7^{2 }\) | \(86 = ( 3!^{2} + 7 ) \cdot 2 \) | \(87 = ( 22 + 7 ) \cdot 3 \) | \(88 = ( 7 - 3 ) \cdot 22 \) |
\(89 = ?\) | \(90 = ( 22 - 7 ) \cdot 3 !\) | \(91 = 2^{3!} + 27 \) | \(92 = ( 7^{2} - 3 ) \cdot 2 \) |
\(93 = ( 2 + 3 )! - 27 \) | \(94 = ?\) | \(95 = 22 + 73 \) | \(96 = 2^{7} - 32 \) |
\(97 = ( 7 - 2 )! - 23 \) | \(98 = ( 3 + 7 )^{2} - 2 \) | \(99 = ?\) | \(100 = ( \frac{ 3!! }{ 72 } )^{2 }\) |