\(1 = 29^{2 - 2 }\) | \(2 = \frac{ 22 }{ 2 } - 9 \) | \(3 = \frac{ 9 }{ \frac{ 2 }{ 2 } + 2 }\) | \(4 = 22 - 2 \cdot 9 \) |
\(5 = \sqrt{29 - 2 - 2 }\) | \(6 = 9 - ( \frac{ 2 }{ 2 } + 2 )\) | \(7 = 29 - 22 \) | \(8 = \frac{ 22 }{ 2 } - \sqrt{9 }\) |
\(9 = ( 2 - 2 ) \cdot 2 + 9 \) | \(10 = 2^{2 - 2} + 9 \) | \(11 = 22 - 2 - 9 \) | \(12 = \frac{ 2 }{ 2 } + 2 + 9 \) |
\(13 = \sqrt{22^{2}} - 9 \) | \(14 = \frac{ 22 }{ 2 } + \sqrt{9 }\) | \(15 = 22 + 2 - 9 \) | \(16 = 22 - 2 \cdot \sqrt{9 }\) |
\(17 = 22 - 2 - \sqrt{9 }\) | \(18 = ( 2 - 2 + 2 ) \cdot 9 \) | \(19 = \frac{ 2 }{ 2 } + 2 \cdot 9 \) | \(20 = \frac{ 22 }{ 2 } + 9 \) |
\(21 = 22 + 2 - \sqrt{9 }\) | \(22 = ( \sqrt{9} - 2 ) \cdot 22 \) | \(23 = \frac{ \frac{ 92 }{ 2 } }{ 2 }\) | \(24 = ( 22 - 2 \cdot 9 )!\) |
\(25 = 29 - 2 - 2 \) | \(26 = ( 22 - 9 ) \cdot 2 \) | \(27 = 22 + 2 + \sqrt{9 }\) | \(28 = 29 - \frac{ 2 }{ 2 }\) |
\(29 = 22 - 2 + 9 \) | \(30 = \frac{ 2 }{ 2 } + 29 \) | \(31 = \sqrt{22^{2}} + 9 \) | \(32 = 2^{9 - ( 2 + 2 )}\) |
\(33 = 22 + 2 + 9 \) | \(34 = ( 2 + 2 ) \cdot 9 - 2 \) | \(35 = 22 \cdot 2 - 9 \) | \(36 = ( \sqrt{2 + 2} + 2 ) \cdot 9 \) |
\(37 = \frac{ 222 }{ \sqrt{9 }! }\) | \(38 = ( 22 - \sqrt{9} ) \cdot 2 \) | \(39 = ( 2 + 2 )! \cdot 2 - 9 \) | \(40 = 2 \cdot 9 + 22 \) |
\(41 = 22 \cdot 2 - \sqrt{9 }\) | \(42 = 2^{\sqrt{9}!} - 22 \) | \(43 = ?\) | \(44 = \frac{ 92 }{ 2 } - 2 \) |
\(45 = \frac{ 92 - 2 }{ 2 }\) | \(46 = \sqrt{( \frac{ 92 }{ 2 } )^{2 }}\) | \(47 = \frac{ 92 + 2 }{ 2 }\) | \(48 = \frac{ 92 }{ 2 } + 2 \) |
\(49 = ( 9 - \sqrt{2 + 2} )^{2 }\) | \(50 = ( 22 + \sqrt{9} ) \cdot 2 \) | \(51 = 22 + 29 \) | \(52 = ( ( \sqrt{9}! - 2 )! + 2 ) \cdot 2 \) |
\(53 = 22 \cdot 2 + 9 \) | \(54 = ( 29 - 2 ) \cdot 2 \) | \(55 = \sqrt{\sqrt{2^{( 2 + 2 )!}}} - 9 \) | \(56 = 29 \cdot 2 - 2 \) |
\(57 = ( 2 + 2 )! \cdot 2 + 9 \) | \(58 = \sqrt{29^{2}} \cdot 2 \) | \(59 = 9^{2} - 22 \) | \(60 = 29 \cdot 2 + 2 \) |
\(61 = \frac{ ( 2 + \sqrt{9} )! + 2 }{ 2 }\) | \(62 = ( 22 + 9 ) \cdot 2 \) | \(63 = 2^{\sqrt{9}!} - \frac{ 2 }{ 2 }\) | \(64 = 22 \cdot \sqrt{9} - 2 \) |
\(65 = \frac{ 2 }{ 2 } + 2^{\sqrt{9 }!}\) | \(66 = \sqrt{22^{2} \cdot 9 }\) | \(67 = \sqrt{\sqrt{2^{( 2 + 2 )!}}} + \sqrt{9 }\) | \(68 = 22 \cdot \sqrt{9} + 2 \) |
\(69 = ?\) | \(70 = 92 - 22 \) | \(71 = \sqrt{\frac{ 2 }{ 2 } + ( 9 - 2 )!}\) | \(72 = ( 22 + 2 ) \cdot \sqrt{9 }\) |
\(73 = \sqrt{\sqrt{2^{( 2 + 2 )!}}} + 9 \) | \(74 = \frac{ 222 }{ \sqrt{9 } }\) | \(75 = ?\) | \(76 = ( \sqrt{9}!^{2} + 2 ) \cdot 2 \) |
\(77 = 9^{2} - 2 - 2 \) | \(78 = ( ( 2 + 2 )! + 2 ) \cdot \sqrt{9 }\) | \(79 = \sqrt{( 9^{2} - 2 )^{2 }}\) | \(80 = 9^{2} - \frac{ 2 }{ 2 }\) |
\(81 = 9^{2 - 2 + 2 }\) | \(82 = \frac{ 2 }{ 2 } + 9^{2 }\) | \(83 = 9^{\sqrt{2 + 2}} + 2 \) | \(84 = ?\) |
\(85 = 9^{2} + 2 + 2 \) | \(86 = 2^{\sqrt{9}!} + 22 \) | \(87 = ?\) | \(88 = 92 - 2 - 2 \) |
\(89 = ?\) | \(90 = \sqrt{( 92 - 2 )^{2 }}\) | \(91 = 92 - \frac{ 2 }{ 2 }\) | \(92 = \frac{ 92 }{ 2 } \cdot 2 \) |
\(93 = \frac{ 2 }{ 2 } + 92 \) | \(94 = \sqrt{92^{2}} + 2 \) | \(95 = ?\) | \(96 = 92 + 2 + 2 \) |
\(97 = ?\) | \(98 = ( 9 - 2 )^{2} \cdot 2 \) | \(99 = \frac{ 22 }{ 2 } \cdot 9 \) | \(100 = ( \frac{ 2 }{ 2 } + 9 )^{2 }\) |