2229

\(1 = 29^{2 - 2 }\) \(2 = \frac{ 22 }{ 2 } - 9 \) \(3 = \frac{ 9 }{ \frac{ 2 }{ 2 } + 2 }\) \(4 = 22 - 2 \cdot 9 \)
\(5 = \sqrt{29 - 2 - 2 }\) \(6 = 9 - ( \frac{ 2 }{ 2 } + 2 )\) \(7 = 29 - 22 \) \(8 = \frac{ 22 }{ 2 } - \sqrt{9 }\)
\(9 = ( 2 - 2 ) \cdot 2 + 9 \) \(10 = 2^{2 - 2} + 9 \) \(11 = 22 - 2 - 9 \) \(12 = \frac{ 2 }{ 2 } + 2 + 9 \)
\(13 = \sqrt{22^{2}} - 9 \) \(14 = \frac{ 22 }{ 2 } + \sqrt{9 }\) \(15 = 22 + 2 - 9 \) \(16 = 22 - 2 \cdot \sqrt{9 }\)
\(17 = 22 - 2 - \sqrt{9 }\) \(18 = ( 2 - 2 + 2 ) \cdot 9 \) \(19 = \frac{ 2 }{ 2 } + 2 \cdot 9 \) \(20 = \frac{ 22 }{ 2 } + 9 \)
\(21 = 22 + 2 - \sqrt{9 }\) \(22 = ( \sqrt{9} - 2 ) \cdot 22 \) \(23 = \frac{ \frac{ 92 }{ 2 } }{ 2 }\) \(24 = ( 22 - 2 \cdot 9 )!\)
\(25 = 29 - 2 - 2 \) \(26 = ( 22 - 9 ) \cdot 2 \) \(27 = 22 + 2 + \sqrt{9 }\) \(28 = 29 - \frac{ 2 }{ 2 }\)
\(29 = 22 - 2 + 9 \) \(30 = \frac{ 2 }{ 2 } + 29 \) \(31 = \sqrt{22^{2}} + 9 \) \(32 = 2^{9 - ( 2 + 2 )}\)
\(33 = 22 + 2 + 9 \) \(34 = ( 2 + 2 ) \cdot 9 - 2 \) \(35 = 22 \cdot 2 - 9 \) \(36 = ( \sqrt{2 + 2} + 2 ) \cdot 9 \)
\(37 = \frac{ 222 }{ \sqrt{9 }! }\) \(38 = ( 22 - \sqrt{9} ) \cdot 2 \) \(39 = ( 2 + 2 )! \cdot 2 - 9 \) \(40 = 2 \cdot 9 + 22 \)
\(41 = 22 \cdot 2 - \sqrt{9 }\) \(42 = 2^{\sqrt{9}!} - 22 \) \(43 = ?\) \(44 = \frac{ 92 }{ 2 } - 2 \)
\(45 = \frac{ 92 - 2 }{ 2 }\) \(46 = \sqrt{( \frac{ 92 }{ 2 } )^{2 }}\) \(47 = \frac{ 92 + 2 }{ 2 }\) \(48 = \frac{ 92 }{ 2 } + 2 \)
\(49 = ( 9 - \sqrt{2 + 2} )^{2 }\) \(50 = ( 22 + \sqrt{9} ) \cdot 2 \) \(51 = 22 + 29 \) \(52 = ( ( \sqrt{9}! - 2 )! + 2 ) \cdot 2 \)
\(53 = 22 \cdot 2 + 9 \) \(54 = ( 29 - 2 ) \cdot 2 \) \(55 = \sqrt{\sqrt{2^{( 2 + 2 )!}}} - 9 \) \(56 = 29 \cdot 2 - 2 \)
\(57 = ( 2 + 2 )! \cdot 2 + 9 \) \(58 = \sqrt{29^{2}} \cdot 2 \) \(59 = 9^{2} - 22 \) \(60 = 29 \cdot 2 + 2 \)
\(61 = \frac{ ( 2 + \sqrt{9} )! + 2 }{ 2 }\) \(62 = ( 22 + 9 ) \cdot 2 \) \(63 = 2^{\sqrt{9}!} - \frac{ 2 }{ 2 }\) \(64 = 22 \cdot \sqrt{9} - 2 \)
\(65 = \frac{ 2 }{ 2 } + 2^{\sqrt{9 }!}\) \(66 = \sqrt{22^{2} \cdot 9 }\) \(67 = \sqrt{\sqrt{2^{( 2 + 2 )!}}} + \sqrt{9 }\) \(68 = 22 \cdot \sqrt{9} + 2 \)
\(69 = ?\) \(70 = 92 - 22 \) \(71 = \sqrt{\frac{ 2 }{ 2 } + ( 9 - 2 )!}\) \(72 = ( 22 + 2 ) \cdot \sqrt{9 }\)
\(73 = \sqrt{\sqrt{2^{( 2 + 2 )!}}} + 9 \) \(74 = \frac{ 222 }{ \sqrt{9 } }\) \(75 = ?\) \(76 = ( \sqrt{9}!^{2} + 2 ) \cdot 2 \)
\(77 = 9^{2} - 2 - 2 \) \(78 = ( ( 2 + 2 )! + 2 ) \cdot \sqrt{9 }\) \(79 = \sqrt{( 9^{2} - 2 )^{2 }}\) \(80 = 9^{2} - \frac{ 2 }{ 2 }\)
\(81 = 9^{2 - 2 + 2 }\) \(82 = \frac{ 2 }{ 2 } + 9^{2 }\) \(83 = 9^{\sqrt{2 + 2}} + 2 \) \(84 = ?\)
\(85 = 9^{2} + 2 + 2 \) \(86 = 2^{\sqrt{9}!} + 22 \) \(87 = ?\) \(88 = 92 - 2 - 2 \)
\(89 = ?\) \(90 = \sqrt{( 92 - 2 )^{2 }}\) \(91 = 92 - \frac{ 2 }{ 2 }\) \(92 = \frac{ 92 }{ 2 } \cdot 2 \)
\(93 = \frac{ 2 }{ 2 } + 92 \) \(94 = \sqrt{92^{2}} + 2 \) \(95 = ?\) \(96 = 92 + 2 + 2 \)
\(97 = ?\) \(98 = ( 9 - 2 )^{2} \cdot 2 \) \(99 = \frac{ 22 }{ 2 } \cdot 9 \) \(100 = ( \frac{ 2 }{ 2 } + 9 )^{2 }\)