\(1 = 27^{2 - 2 }\) | \(2 = \sqrt{\frac{ 22 }{ 2 } - 7 }\) | \(3 = \sqrt{27 - 2} - 2 \) | \(4 = \frac{ 22 }{ 2 } - 7 \) |
\(5 = 27 - 22 \) | \(6 = \sqrt{2 \cdot 7 + 22 }\) | \(7 = \sqrt{22 + 27 }\) | \(8 = 22 - 2 \cdot 7 \) |
\(9 = 2 - 2 + 2 + 7 \) | \(10 = \sqrt{27 - 2} \cdot 2 \) | \(11 = \sqrt{2 + 2} + 2 + 7 \) | \(12 = \sqrt{\frac{ 72 }{ 2 }} \cdot 2 \) |
\(13 = 22 - 2 - 7 \) | \(14 = \sqrt{72 \cdot 2} + 2 \) | \(15 = \sqrt{227 - 2 }\) | \(16 = ( \frac{ 2 }{ 2 } + 7 ) \cdot 2 \) |
\(17 = 22 + 2 - 7 \) | \(18 = \frac{ 22 }{ 2 } + 7 \) | \(19 = \sqrt{\frac{ 722 }{ 2 }}\) | \(20 = ( 7 - 2 ) \cdot 2 \cdot 2 \) |
\(21 = ( \frac{ 2 }{ 2 } + 2 ) \cdot 7 \) | \(22 = ( 2 + 2 + 7 ) \cdot 2 \) | \(23 = 27 - 2 - 2 \) | \(24 = ( \frac{ 22 }{ 2 } - 7 )!\) |
\(25 = \sqrt{2 + 7} + 22 \) | \(26 = 27 - \frac{ 2 }{ 2 }\) | \(27 = 22 - 2 + 7 \) | \(28 = \frac{ 2 }{ 2 } + 27 \) |
\(29 = \sqrt{22^{2}} + 7 \) | \(30 = ( 22 - 7 ) \cdot 2 \) | \(31 = 22 + 2 + 7 \) | \(32 = 2^{\sqrt{27 - 2 }}\) |
\(33 = ( 2 + 2 )! + 2 + 7 \) | \(34 = \frac{ 72 }{ 2 } - 2 \) | \(35 = \frac{ 72 - 2 }{ 2 }\) | \(36 = 2 \cdot 7 + 22 \) |
\(37 = 22 \cdot 2 - 7 \) | \(38 = \sqrt{722 \cdot 2 }\) | \(39 = ?\) | \(40 = ?\) |
\(41 = ( 2 + 2 )! \cdot 2 - 7 \) | \(42 = ( 2 + 2 + 2 ) \cdot 7 \) | \(43 = ?\) | \(44 = ?\) |
\(45 = 7^{2} - 2 - 2 \) | \(46 = ?\) | \(47 = \sqrt{( 7^{2} - 2 )^{2 }}\) | \(48 = 72 - ( 2 + 2 )!\) |
\(49 = 22 + 27 \) | \(50 = 72 - 22 \) | \(51 = 22 \cdot 2 + 7 \) | \(52 = 27 \cdot 2 - 2 \) |
\(53 = 7^{2} + 2 + 2 \) | \(54 = \sqrt{27^{2}} \cdot 2 \) | \(55 = ( 2 + 2 )! \cdot 2 + 7 \) | \(56 = 27 \cdot 2 + 2 \) |
\(57 = \sqrt{\sqrt{2^{( 2 + 2 )!}}} - 7 \) | \(58 = ( 22 + 7 ) \cdot 2 \) | \(59 = \frac{ ( 7 - 2 )! - 2 }{ 2 }\) | \(60 = \frac{ \sqrt{27 - 2}! }{ 2 }\) |
\(61 = \frac{ ( 7 - 2 )! + 2 }{ 2 }\) | \(62 = \frac{ 2^{7} }{ 2 } - 2 \) | \(63 = \frac{ 2^{7} - 2 }{ 2 }\) | \(64 = 2^{\sqrt{\frac{ 72 }{ 2 }}}\) |
\(65 = \frac{ 2^{7} + 2 }{ 2 }\) | \(66 = \sqrt{2 + 7} \cdot 22 \) | \(67 = ?\) | \(68 = 72 - 2 - 2 \) |
\(69 = \sqrt{\frac{ 2 }{ 2 } + 7!} - 2 \) | \(70 = \sqrt{( 72 - 2 )^{2 }}\) | \(71 = 7^{2} + 22 \) | \(72 = \frac{ 72 }{ 2 } \cdot 2 \) |
\(73 = \frac{ 2 }{ 2 } + 72 \) | \(74 = \sqrt{72^{2}} + 2 \) | \(75 = ?\) | \(76 = 72 + 2 + 2 \) |
\(77 = \frac{ 22 }{ 2 } \cdot 7 \) | \(78 = ?\) | \(79 = ( 2 + 7 )^{2} - 2 \) | \(80 = ?\) |
\(81 = ( \sqrt{2 + 2} + 7 )^{2 }\) | \(82 = ?\) | \(83 = ( 2 + 7 )^{2} + 2 \) | \(84 = \frac{ ( 2 + 2 )! }{ 2 } \cdot 7 \) |
\(85 = ?\) | \(86 = ?\) | \(87 = ?\) | \(88 = ?\) |
\(89 = ?\) | \(90 = ?\) | \(91 = ?\) | \(92 = ?\) |
\(93 = ?\) | \(94 = 22 + 72 \) | \(95 = ?\) | \(96 = ( 2 + 2 )! + 72 \) |
\(97 = ?\) | \(98 = ( 7 - 2 )! - 22 \) | \(99 = ?\) | \(100 = ( ( 7 - 2 ) \cdot 2 )^{2 }\) |