\(1 = 23 - 22 \) | \(2 = \sqrt{\frac{ 32 }{ 2 }} - 2 \) | \(3 = \sqrt{22 + 3} - 2 \) | \(4 = \frac{ 22 + 2 }{ 3 ! }\) |
\(5 = \frac{ 22 }{ 2 } - 3 !\) | \(6 = \sqrt{\frac{ 32 }{ 2 }} + 2 \) | \(7 = \sqrt{22 + 3} + 2 \) | \(8 = \frac{ 22 }{ 2 } - 3 \) |
\(9 = 3^{2 - 2 + 2 }\) | \(10 = 32 - 22 \) | \(11 = ( 2 + 2 ) \cdot 2 + 3 \) | \(12 = ( 2^{3} - 2 ) \cdot 2 \) |
\(13 = 22 - 3^{2 }\) | \(14 = \frac{ 22 }{ 2 } + 3 \) | \(15 = \sqrt{222 + 3 }\) | \(16 = 22 - 2 \cdot 3 \) |
\(17 = 22 - 2 - 3 \) | \(18 = \sqrt{322 + 2 }\) | \(19 = 23 - 2 - 2 \) | \(20 = ( 2 + 3 ) \cdot 2 \cdot 2 \) |
\(21 = 22 + 2 - 3 \) | \(22 = ( 3 - 2 ) \cdot 22 \) | \(23 = 22 - 2 + 3 \) | \(24 = \frac{ 2 }{ 2 } + 23 \) |
\(25 = \sqrt{22^{2}} + 3 \) | \(26 = 22 - 2 + 3 !\) | \(27 = 22 + 2 + 3 \) | \(28 = 2 \cdot 3 + 22 \) |
\(29 = ( 2 + 2 )! + 2 + 3 \) | \(30 = 2^{3} + 22 \) | \(31 = 3^{2} + 22 \) | \(32 = \frac{ 32 }{ 2 } \cdot 2 \) |
\(33 = \frac{ 22 }{ 2 } \cdot 3 \) | \(34 = 2 \cdot 3! + 22 \) | \(35 = 3!^{2} - \frac{ 2 }{ 2 }\) | \(36 = 32 + 2 + 2 \) |
\(37 = \frac{ 222 }{ 3 ! }\) | \(38 = ( 22 - 3 ) \cdot 2 \) | \(39 = ?\) | \(40 = 3!^{2} + 2 + 2 \) |
\(41 = 22 \cdot 2 - 3 \) | \(42 = ( 23 - 2 ) \cdot 2 \) | \(43 = ?\) | \(44 = 23 \cdot 2 - 2 \) |
\(45 = 22 + 23 \) | \(46 = \sqrt{23^{2}} \cdot 2 \) | \(47 = 22 \cdot 2 + 3 \) | \(48 = 23 \cdot 2 + 2 \) |
\(49 = ( 2 + 2 + 3 )^{2 }\) | \(50 = ( 22 + 3 ) \cdot 2 \) | \(51 = ( 2 + 2 )! \cdot 2 + 3 \) | \(52 = ( ( 3! - 2 )! + 2 ) \cdot 2 \) |
\(53 = ?\) | \(54 = 22 + 32 \) | \(55 = ?\) | \(56 = ( 22 + 3! ) \cdot 2 \) |
\(57 = ?\) | \(58 = 3!^{2} + 22 \) | \(59 = \frac{ ( 2 + 3 )! - 2 }{ 2 }\) | \(60 = ( 22 - 2 ) \cdot 3 \) |
\(61 = \frac{ ( 2 + 3 )! + 2 }{ 2 }\) | \(62 = 32 \cdot 2 - 2 \) | \(63 = 2^{3!} - \frac{ 2 }{ 2 }\) | \(64 = 22 \cdot 3 - 2 \) |
\(65 = \frac{ 2 }{ 2 } + 2^{3 !}\) | \(66 = 32 \cdot 2 + 2 \) | \(67 = \sqrt{\sqrt{2^{( 2 + 2 )!}}} + 3 \) | \(68 = 22 \cdot 3 + 2 \) |
\(69 = ?\) | \(70 = ( 2 + 2 )! \cdot 3 - 2 \) | \(71 = ?\) | \(72 = ( 22 + 2 ) \cdot 3 \) |
\(73 = ?\) | \(74 = \frac{ 222 }{ 3 }\) | \(75 = ?\) | \(76 = ( 3!^{2} + 2 ) \cdot 2 \) |
\(77 = ?\) | \(78 = ( ( 2 + 2 )! + 2 ) \cdot 3 \) | \(79 = 3^{2 + 2} - 2 \) | \(80 = ?\) |
\(81 = 3^{\sqrt{2 + 2} + 2 }\) | \(82 = ?\) | \(83 = 3^{2 + 2} + 2 \) | \(84 = ?\) |
\(85 = ?\) | \(86 = 2^{3!} + 22 \) | \(87 = ?\) | \(88 = ( 3! - 2 ) \cdot 22 \) |
\(89 = ?\) | \(90 = \frac{ 3!! }{ ( 2 + 2 ) \cdot 2 }\) | \(91 = ?\) | \(92 = 23 \cdot 2 \cdot 2 \) |
\(93 = ?\) | \(94 = ?\) | \(95 = ?\) | \(96 = ( 2 + 2 )^{2} \cdot 3 !\) |
\(97 = ?\) | \(98 = ( 2 + 3 )! - 22 \) | \(99 = ?\) | \(100 = ( ( 2 + 3 ) \cdot 2 )^{2 }\) |