\(1 = \frac{ 22 }{ 22 }\) | \(2 = ( 2 + 2 )! - 22 \) | \(3 = \sqrt{\frac{ 22 }{ 2 } - 2 }\) | \(4 = 2 - 2 + 2 + 2 \) |
\(5 = \frac{ 2 }{ 2 } + 2 + 2 \) | \(6 = ( \frac{ 2 }{ 2 } + 2 ) \cdot 2 \) | \(7 = ?\) | \(8 = 2^{\frac{ 2 }{ 2 } + 2 }\) |
\(9 = \frac{ 22 }{ 2 } - 2 \) | \(10 = \frac{ 22 - 2 }{ 2 }\) | \(11 = \sqrt{( \frac{ 22 }{ 2 } )^{2 }}\) | \(12 = \frac{ 22 + 2 }{ 2 }\) |
\(13 = \frac{ 22 }{ 2 } + 2 \) | \(14 = ( 2 + 2 )^{2} - 2 \) | \(15 = ?\) | \(16 = ( 2 + 2 ) \cdot 2 \cdot 2 \) |
\(17 = ?\) | \(18 = 22 - 2 - 2 \) | \(19 = ?\) | \(20 = \sqrt{( 22 - 2 )^{2 }}\) |
\(21 = 22 - \frac{ 2 }{ 2 }\) | \(22 = \sqrt{22 \cdot 22 }\) | \(23 = \frac{ 2 }{ 2 } + 22 \) | \(24 = \sqrt{22^{2}} + 2 \) |
\(25 = \frac{ 2 }{ 2 } + ( 2 + 2 )!\) | \(26 = 22 + 2 + 2 \) | \(27 = ?\) | \(28 = ( 2 + 2 )! + 2 + 2 \) |
\(29 = ?\) | \(30 = ?\) | \(31 = ?\) | \(32 = ( 2 + 2 )^{2} \cdot 2 \) |
\(33 = ?\) | \(34 = ?\) | \(35 = ?\) | \(36 = ( 2 + 2 + 2 )^{2 }\) |
\(37 = ?\) | \(38 = ?\) | \(39 = ?\) | \(40 = ( 22 - 2 ) \cdot 2 \) |
\(41 = ?\) | \(42 = 22 \cdot 2 - 2 \) | \(43 = ?\) | \(44 = 22 + 22 \) |
\(45 = ?\) | \(46 = 22 \cdot 2 + 2 \) | \(47 = ?\) | \(48 = ( 22 + 2 ) \cdot 2 \) |
\(49 = ?\) | \(50 = ( 2 + 2 )! \cdot 2 + 2 \) | \(51 = ?\) | \(52 = ( ( 2 + 2 )! + 2 ) \cdot 2 \) |
\(53 = ?\) | \(54 = ?\) | \(55 = ?\) | \(56 = ?\) |
\(57 = ?\) | \(58 = ?\) | \(59 = ?\) | \(60 = ?\) |
\(61 = ?\) | \(62 = \sqrt{\sqrt{2^{( 2 + 2 )!}}} - 2 \) | \(63 = ?\) | \(64 = 2^{2 + 2 + 2 }\) |
\(65 = ?\) | \(66 = \sqrt{\sqrt{2^{( 2 + 2 )!}}} + 2 \) | \(67 = ?\) | \(68 = ?\) |
\(69 = ?\) | \(70 = ?\) | \(71 = ?\) | \(72 = ?\) |
\(73 = ?\) | \(74 = ?\) | \(75 = ?\) | \(76 = ?\) |
\(77 = ?\) | \(78 = ?\) | \(79 = ?\) | \(80 = ?\) |
\(81 = ?\) | \(82 = ?\) | \(83 = ?\) | \(84 = ?\) |
\(85 = ?\) | \(86 = ?\) | \(87 = ?\) | \(88 = 22 \cdot 2 \cdot 2 \) |
\(89 = ?\) | \(90 = ?\) | \(91 = ?\) | \(92 = ?\) |
\(93 = ?\) | \(94 = ?\) | \(95 = ?\) | \(96 = ( 2 + 2 )! \cdot 2 \cdot 2 \) |
\(97 = ?\) | \(98 = ?\) | \(99 = ?\) | \(100 = ?\) |