\(1 = 17 - 8 - 8 \) | \(2 = \frac{ \sqrt{81} + 7 }{ 8 }\) | \(3 = 81 - 78 \) | \(4 = \sqrt{17 - \frac{ 8 }{ 8 }}\) |
\(5 = 8 - \sqrt{17 - 8 }\) | \(6 = 87 - 81 \) | \(7 = 71 - 8 \cdot 8 \) | \(8 = \sqrt{81} + 7 - 8 \) |
\(9 = 17 - \sqrt{8 \cdot 8 }\) | \(10 = \sqrt{81} - 7 + 8 \) | \(11 = \frac{ 81 + 7 }{ 8 }\) | \(12 = \sqrt{17 \cdot 8 + 8 }\) |
\(13 = \sqrt{17 + 8} + 8 \) | \(14 = 7 - 1^{8} + 8 \) | \(15 = 8 - 1^{7} + 8 \) | \(16 = 17 - \frac{ 8 }{ 8 }\) |
\(17 = 88 - 71 \) | \(18 = \frac{ 8 }{ 8 } + 17 \) | \(19 = 18 - 7 + 8 \) | \(20 = \sqrt{( \sqrt{\sqrt{7^{8}}} + 1 ) \cdot 8 }\) |
\(21 = \sqrt{8 + 8} + 17 \) | \(22 = 7 - 1 + 8 + 8 \) | \(23 = 1 \cdot 7 + 8 + 8 \) | \(24 = \sqrt{17 - 8} \cdot 8 \) |
\(25 = 81 - 7 \cdot 8 \) | \(26 = \frac{ 78 }{ \sqrt{\sqrt{81 }} }\) | \(27 = \sqrt{8 + 8} \cdot 7 - 1 \) | \(28 = \sqrt{1 \cdot 8 + 8} \cdot 7 \) |
\(29 = \frac{ 87 }{ \sqrt{\sqrt{81 }} }\) | \(30 = \sqrt{8 + 8}! - 1 + 7 \) | \(31 = \sqrt{\sqrt{7^{8}}} - 18 \) | \(32 = ( 7 - \sqrt{\sqrt{81}} ) \cdot 8 \) |
\(33 = 17 + 8 + 8 \) | \(34 = \sqrt{\sqrt{8 + 8}} \cdot 17 \) | \(35 = \frac{ \frac{ 7! }{ 18 } }{ 8 }\) | \(36 = \sqrt{\sqrt{( 7 - 1^{8} )^{8 }}}\) |
\(37 = ?\) | \(38 = 7 \cdot 8 - 18 \) | \(39 = \sqrt{\sqrt{\sqrt{81}}^{8} - 7 !}\) | \(40 = \sqrt{17 + 8} \cdot 8 \) |
\(41 = ( 8 - 1 ) \cdot 7 - 8 \) | \(42 = \sqrt{\sqrt{7^{8}}} + 1 - 8 \) | \(43 = \sqrt{\sqrt{\sqrt{\sqrt{81}}!^{8}}} + 7 \) | \(44 = \sqrt{\sqrt{( 7 - 1 )^{8}}} + 8 \) |
\(45 = ( 7 + 8 ) \cdot \sqrt{\sqrt{81 }}\) | \(46 = \sqrt{\sqrt{7^{8}}} - \sqrt{\sqrt{81 }}\) | \(47 = 8 \cdot 8 - 17 \) | \(48 = ( 7 - 1^{8} ) \cdot 8 \) |
\(49 = 7 \cdot 8 + 1 - 8 \) | \(50 = \sqrt{\sqrt{81}}! \cdot 7 + 8 \) | \(51 = ?\) | \(52 = \sqrt{\sqrt{7^{8}}} + \sqrt{\sqrt{81 }}\) |
\(53 = 7 \cdot 8 - \sqrt{\sqrt{81 }}\) | \(54 = ?\) | \(55 = 71 - 8 - 8 \) | \(56 = ( 8 - 1^{7} ) \cdot 8 \) |
\(57 = ( 8 - 1 ) \cdot 7 + 8 \) | \(58 = 8 \cdot 8 + 1 - 7 \) | \(59 = 7 \cdot 8 + \sqrt{\sqrt{81 }}\) | \(60 = 78 - 18 \) |
\(61 = ?\) | \(62 = 7 \cdot 8 + \sqrt{\sqrt{81 }}!\) | \(63 = 71 - \sqrt{8 \cdot 8 }\) | \(64 = 8^{\sqrt{81} - 7 }\) |
\(65 = \sqrt{81} \cdot 8 - 7 \) | \(66 = 81 - 7 - 8 \) | \(67 = 71 - \sqrt{8 + 8 }\) | \(68 = \sqrt{8 + 8} \cdot 17 \) |
\(69 = 87 - 18 \) | \(70 = ( 18 - 8 ) \cdot 7 \) | \(71 = 88 - 17 \) | \(72 = ( 17 - 8 ) \cdot 8 \) |
\(73 = \sqrt{\sqrt{8 + 8}} + 71 \) | \(74 = 7 \cdot 8 + 18 \) | \(75 = 78 - \sqrt{\sqrt{81 }}\) | \(76 = ?\) |
\(77 = 78 - 1^{8 }\) | \(78 = 87 - \sqrt{81 }\) | \(79 = 1^{8} + 78 \) | \(80 = 81 + 7 - 8 \) |
\(81 = 8 \cdot 8 + 17 \) | \(82 = 81 - 7 + 8 \) | \(83 = \frac{ \sqrt{\sqrt{81}}!! }{ 8 } - 7 \) | \(84 = 87 - \sqrt{\sqrt{81 }}\) |
\(85 = 78 - 1 + 8 \) | \(86 = 78 \cdot 1 + 8 \) | \(87 = 78 + \sqrt{81 }\) | \(88 = ( 18 - 7 ) \cdot 8 \) |
\(89 = 1^{7} + 88 \) | \(90 = \sqrt{\sqrt{81}} + 87 \) | \(91 = \frac{ ( 7 - 1 )! + 8 }{ 8 }\) | \(92 = ?\) |
\(93 = \sqrt{\sqrt{81}}! + 87 \) | \(94 = 87 - 1 + 8 \) | \(95 = 87 \cdot 1 + 8 \) | \(96 = 18 + 78 \) |
\(97 = \frac{ \sqrt{\sqrt{81}}!! }{ 8 } + 7 \) | \(98 = \frac{ ( 7 - 1 )! }{ 8 } + 8 \) | \(99 = ?\) | \(100 = \sqrt{\sqrt{( \sqrt{\sqrt{81}} + 7 )^{8 }}}\) |