\(1 = ( 8 - 7 )^{17 }\) | \(2 = \sqrt{81 - 77 }\) | \(3 = \frac{ 17 + 7 }{ 8 }\) | \(4 = 81 - 77 \) |
\(5 = 7 - ( \sqrt{81} - 7 )\) | \(6 = ( \frac{ 17 + 7 }{ 8 } )!\) | \(7 = 78 - 71 \) | \(8 = \frac{ 71 - 7 }{ 8 }\) |
\(9 = \frac{ 71 - 8 }{ 7 }\) | \(10 = \sqrt{17 - 8} + 7 \) | \(11 = \frac{ 77 }{ 8 - 1 }\) | \(12 = \sqrt{17 + 8} + 7 \) |
\(13 = \sqrt{177 - 8 }\) | \(14 = ( \sqrt{81} - 7 ) \cdot 7 \) | \(15 = 71 - 7 \cdot 8 \) | \(16 = 87 - 71 \) |
\(17 = ( 8 - 7 ) \cdot 17 \) | \(18 = 17 - 7 + 8 \) | \(19 = \frac{ 7 }{ 7 } + 18 \) | \(20 = \sqrt{( 7 \cdot 7 + 1 ) \cdot 8 }\) |
\(21 = \sqrt{17 - 8} \cdot 7 \) | \(22 = 1 \cdot 7 + 7 + 8 \) | \(23 = \sqrt{81} + 7 + 7 \) | \(24 = ( 81 - 77 )!\) |
\(25 = \sqrt{7 \cdot 7} + 18 \) | \(26 = ?\) | \(27 = \sqrt{\frac{ 7! }{ 7 } + \sqrt{81 }}\) | \(28 = ( 7 - \sqrt{\sqrt{81}} ) \cdot 7 \) |
\(29 = \sqrt{\sqrt{( 7 - 1 )^{8}}} - 7 \) | \(30 = ?\) | \(31 = 7 \cdot 7 - 18 \) | \(32 = 17 + 7 + 8 \) |
\(33 = ?\) | \(34 = ( 7 - 1 ) \cdot 7 - 8 \) | \(35 = \sqrt{17 + 8} \cdot 7 \) | \(36 = \sqrt{\sqrt{( 7 - 1^{7} )^{8 }}}\) |
\(37 = ?\) | \(38 = ?\) | \(39 = 7 \cdot 8 - 17 \) | \(40 = \frac{ 7! }{ 18 \cdot 7 }\) |
\(41 = 1 \cdot 7 \cdot 7 - 8 \) | \(42 = 7 \cdot 7 + 1 - 8 \) | \(43 = 7 \cdot 7 - \sqrt{\sqrt{81 }}!\) | \(44 = ?\) |
\(45 = ?\) | \(46 = 7 \cdot 7 - \sqrt{\sqrt{81 }}\) | \(47 = ?\) | \(48 = ( 7 - 1^{7} ) \cdot 8 \) |
\(49 = 7^{\sqrt{81} - 7 }\) | \(50 = ( 7 - 1 ) \cdot 7 + 8 \) | \(51 = ?\) | \(52 = 7 \cdot 7 + \sqrt{\sqrt{81 }}\) |
\(53 = ?\) | \(54 = ?\) | \(55 = ( 7 - 1 ) \cdot 8 + 7 \) | \(56 = 71 - 7 - 8 \) |
\(57 = 1 \cdot 7 \cdot 7 + 8 \) | \(58 = 7 \cdot 7 + \sqrt{81 }\) | \(59 = 77 - 18 \) | \(60 = ?\) |
\(61 = 78 - 17 \) | \(62 = 7 \cdot 8 - 1 + 7 \) | \(63 = ( 17 - 8 ) \cdot 7 \) | \(64 = \sqrt{71 - 7} \cdot 8 \) |
\(65 = \frac{ \sqrt{81}! }{ 7! } - 7 \) | \(66 = \sqrt{\sqrt{7^{8}}} + 17 \) | \(67 = 7 \cdot 7 + 18 \) | \(68 = 77 - \sqrt{81 }\) |
\(69 = 77 \cdot 1 - 8 \) | \(70 = 87 - 17 \) | \(71 = ( 8 - 7 ) \cdot 71 \) | \(72 = 71 - 7 + 8 \) |
\(73 = 7 \cdot 8 + 17 \) | \(74 = 77 - \sqrt{\sqrt{81 }}\) | \(75 = ?\) | \(76 = 77 - 1^{8 }\) |
\(77 = ( 18 - 7 ) \cdot 7 \) | \(78 = 1^{8} + 77 \) | \(79 = 1^{7} + 78 \) | \(80 = ( 17 - 7 ) \cdot 8 \) |
\(81 = 81 - 7 + 7 \) | \(82 = \frac{ 7 }{ 7 } + 81 \) | \(83 = 77 + \sqrt{\sqrt{81 }}!\) | \(84 = 77 - 1 + 8 \) |
\(85 = 77 \cdot 1 + 8 \) | \(86 = 77 + \sqrt{81 }\) | \(87 = 1^{7} \cdot 87 \) | \(88 = 1^{7} + 87 \) |
\(89 = \frac{ \frac{ 7! }{ 7 } }{ 8 } - 1 \) | \(90 = ( 7 - 1 ) \cdot ( 7 + 8 )\) | \(91 = \frac{ \frac{ 7! }{ 7 } }{ 8 } + 1 \) | \(92 = ?\) |
\(93 = 87 - 1 + 7 \) | \(94 = 87 \cdot 1 + 7 \) | \(95 = 17 + 78 \) | \(96 = ?\) |
\(97 = \frac{ ( 7 - 1 )! }{ 8 } + 7 \) | \(98 = ( 7 - 1 + 8 ) \cdot 7 \) | \(99 = ?\) | \(100 = \sqrt{\sqrt{( 17 - 7 )^{8 }}}\) |