\(1 = 16^{7 - 7 }\) | \(2 = \sqrt{71 - 67 }\) | \(3 = 6! - 717 \) | \(4 = 71 - 67 \) |
\(5 = 76 - 71 \) | \(6 = ( 6! - 717 )!\) | \(7 = 1 + 6 - 7 + 7 \) | \(8 = ( 1^{6} )^{7} + 7 \) |
\(9 = \sqrt{\sqrt{16} + 77 }\) | \(10 = 7 - \sqrt{16} + 7 \) | \(11 = \frac{ 71 + 6 }{ 7 }\) | \(12 = 61 - 7 \cdot 7 \) |
\(13 = \sqrt{176 - 7 }\) | \(14 = \sqrt{71 - 7} + 6 \) | \(15 = 16 - \frac{ 7 }{ 7 }\) | \(16 = 77 - 61 \) |
\(17 = \frac{ 7 }{ 7 } + 16 \) | \(18 = 17 - 6 + 7 \) | \(19 = 6 - 1 + 7 + 7 \) | \(20 = 1 \cdot 6 + 7 + 7 \) |
\(21 = ( 7 - \sqrt{16} ) \cdot 7 \) | \(22 = \sqrt{\frac{ 7! }{ 6 } + 1} - 7 \) | \(23 = \sqrt{7 \cdot 7} + 16 \) | \(24 = ( 71 - 67 )!\) |
\(25 = 6 \cdot 7 - 17 \) | \(26 = \sqrt{677 - 1 }\) | \(27 = ?\) | \(28 = \sqrt{16 \cdot 7 \cdot 7 }\) |
\(29 = 71 - 6 \cdot 7 \) | \(30 = 16 + 7 + 7 \) | \(31 = \sqrt{7 \cdot 7} + \sqrt{16 }!\) | \(32 = ?\) |
\(33 = 7 \cdot 7 - 16 \) | \(34 = 6 \cdot 7 - 1 - 7 \) | \(35 = \sqrt{16} \cdot 7 + 7 \) | \(36 = 6 \cdot 7 + 1 - 7 \) |
\(37 = ?\) | \(38 = \sqrt{16}! + 7 + 7 \) | \(39 = ?\) | \(40 = ?\) |
\(41 = ( 1 + 7 ) \cdot 6 - 7 \) | \(42 = ( 7 - 1^{6} ) \cdot 7 \) | \(43 = ( 6 - 1 )! - 77 \) | \(44 = 7 \cdot 7 + 1 - 6 \) |
\(45 = \frac{ 7! }{ 16 \cdot 7 }\) | \(46 = ?\) | \(47 = 61 - 7 - 7 \) | \(48 = \sqrt{71 - 7} \cdot 6 \) |
\(49 = 7^{7 - ( 6 - 1 )}\) | \(50 = 67 - 17 \) | \(51 = 771 - 6 !\) | \(52 = ?\) |
\(53 = 77 - \sqrt{16 }!\) | \(54 = 61 - \sqrt{7 \cdot 7 }\) | \(55 = ( 1 + 7 ) \cdot 6 + 7 \) | \(56 = ( 7 + 7 ) \cdot \sqrt{16 }\) |
\(57 = ?\) | \(58 = 71 - 6 - 7 \) | \(59 = 76 - 17 \) | \(60 = ( 17 - 7 ) \cdot 6 \) |
\(61 = 77 - 16 \) | \(62 = \frac{ 7 }{ 7 } + 61 \) | \(63 = ( 16 - 7 ) \cdot 7 \) | \(64 = ( \frac{ 7 }{ 7 } + 1 )^{6 }\) |
\(65 = 7 \cdot 7 + 16 \) | \(66 = 67 - 1^{7 }\) | \(67 = 1^{7} \cdot 67 \) | \(68 = 1^{7} + 67 \) |
\(69 = 76 \cdot 1 - 7 \) | \(70 = 71 + 6 - 7 \) | \(71 = ( 7 - 6 ) \cdot 71 \) | \(72 = 71 - 6 + 7 \) |
\(73 = 77 - \sqrt{16 }\) | \(74 = 67 \cdot 1 + 7 \) | \(75 = 61 + 7 + 7 \) | \(76 = 1^{7} \cdot 76 \) |
\(77 = ( 17 - 6 ) \cdot 7 \) | \(78 = 1^{6} + 77 \) | \(79 = \sqrt{\sqrt{16}} + 77 \) | \(80 = ?\) |
\(81 = \sqrt{16} + 77 \) | \(82 = 76 - 1 + 7 \) | \(83 = 76 \cdot 1 + 7 \) | \(84 = 17 + 67 \) |
\(85 = ( 7 + 7 ) \cdot 6 + 1 \) | \(86 = ?\) | \(87 = ?\) | \(88 = ?\) |
\(89 = ?\) | \(90 = ( 1 + 7 + 7 ) \cdot 6 \) | \(91 = ( 1 \cdot 6 + 7 ) \cdot 7 \) | \(92 = ( 6 + 7 ) \cdot 7 + 1 \) |
\(93 = 16 + 77 \) | \(94 = ?\) | \(95 = 17 \cdot 6 - 7 \) | \(96 = \frac{ 1 + 6! }{ 7 } - 7 \) |
\(97 = \frac{ 6! }{ 1 + 7 } + 7 \) | \(98 = ( 1 + 6 + 7 ) \cdot 7 \) | \(99 = ?\) | \(100 = ?\) |