\(1 = \frac{ 15 - 7 }{ 8 }\) | \(2 = \sqrt{17 - 5 - 8 }\) | \(3 = \sqrt{\frac{ 18 }{ 7 - 5 }}\) | \(4 = 17 - 5 - 8 \) |
\(5 = \frac{ 85 }{ 17 }\) | \(6 = 81 - 75 \) | \(7 = \frac{ 57 - 1 }{ 8 }\) | \(8 = \sqrt{( 15 - 7 ) \cdot 8 }\) |
\(9 = \frac{ 18 }{ 7 - 5 }\) | \(10 = \sqrt{17 + 8} + 5 \) | \(11 = 17 - ( 8 - 5 )!\) | \(12 = \frac{ 85 - 1 }{ 7 }\) |
\(13 = 71 - 58 \) | \(14 = 85 - 71 \) | \(15 = ( 8 - 7 ) \cdot 15 \) | \(16 = 15 - 7 + 8 \) |
\(17 = 5 \cdot 7 - 18 \) | \(18 = \sqrt{18^{7 - 5 }}\) | \(19 = \frac{ 57 }{ \sqrt{\sqrt{81 }} }\) | \(20 = 17 - 5 + 8 \) |
\(21 = \sqrt{81} + 5 + 7 \) | \(22 = ( 7 - 1 ) \cdot 5 - 8 \) | \(23 = 5 \cdot 8 - 17 \) | \(24 = 81 - 57 \) |
\(25 = \frac{ 75 }{ \sqrt{\sqrt{81 }} }\) | \(26 = 5 \cdot 7 - \sqrt{81 }\) | \(27 = 78 - 51 \) | \(28 = \sqrt{785 - 1 }\) |
\(29 = ( 7 - \sqrt{\sqrt{81}} )! + 5 \) | \(30 = 15 + 7 + 8 \) | \(31 = 71 - 5 \cdot 8 \) | \(32 = \frac{ 5! }{ 8 } + 17 \) |
\(33 = 5! - 87 \cdot 1 \) | \(34 = 5! - ( 87 - 1 )\) | \(35 = 1^{8} \cdot 5 \cdot 7 \) | \(36 = 87 - 51 \) |
\(37 = \sqrt{\sqrt{81}}! \cdot 5 + 7 \) | \(38 = \sqrt{81} \cdot 5 - 7 \) | \(39 = 57 - 18 \) | \(40 = 1^{7} \cdot 5 \cdot 8 \) |
\(41 = 58 - 17 \) | \(42 = \frac{ \frac{ 7! }{ 15 } }{ 8 }\) | \(43 = 5! - ( 78 - 1 )\) | \(44 = 5 \cdot 7 + \sqrt{81 }\) |
\(45 = ( 17 - 8 ) \cdot 5 \) | \(46 = 81 - 5 \cdot 7 \) | \(47 = 1 \cdot 5 \cdot 8 + 7 \) | \(48 = 57 - \sqrt{81 }\) |
\(49 = ( 15 - 8 ) \cdot 7 \) | \(50 = 51 + 7 - 8 \) | \(51 = ( 8 - 5 ) \cdot 17 \) | \(52 = 51 - 7 + 8 \) |
\(53 = 5 \cdot 7 + 18 \) | \(54 = 57 - \sqrt{\sqrt{81 }}\) | \(55 = ( 18 - 7 ) \cdot 5 \) | \(56 = 57 - 1^{8 }\) |
\(57 = 75 - 18 \) | \(58 = 178 - 5 !\) | \(59 = 1^{7} + 58 \) | \(60 = 57 + \sqrt{\sqrt{81 }}\) |
\(61 = 1 \cdot 7 \cdot 8 + 5 \) | \(62 = 7 \cdot 8 + 1 + 5 \) | \(63 = 78 - 15 \) | \(64 = ( 15 - 7 ) \cdot 8 \) |
\(65 = 57 \cdot 1 + 8 \) | \(66 = 57 + \sqrt{81 }\) | \(67 = 187 - 5 !\) | \(68 = 85 - 17 \) |
\(69 = 81 - 5 - 7 \) | \(70 = ( 7 - 1 + 8 ) \cdot 5 \) | \(71 = 7 \cdot 8 + 15 \) | \(72 = 87 - 15 \) |
\(73 = 78 \cdot 1 - 5 \) | \(74 = \frac{ 518 }{ 7 }\) | \(75 = 17 + 58 \) | \(76 = 1^{8} + 75 \) |
\(77 = 17 \cdot 5 - 8 \) | \(78 = 1^{5} \cdot 78 \) | \(79 = 1^{5} + 78 \) | \(80 = \sqrt{5 - 1} + 78 \) |
\(81 = 87 - 1 - 5 \) | \(82 = 75 - 1 + 8 \) | \(83 = \frac{ 581 }{ 7 }\) | \(84 = 75 + \sqrt{81 }\) |
\(85 = 1^{7} \cdot 85 \) | \(86 = 1^{7} + 85 \) | \(87 = 1^{5} \cdot 87 \) | \(88 = 1^{5} + 87 \) |
\(89 = \sqrt{5 - 1} + 87 \) | \(90 = ( 5 + 8 ) \cdot 7 - 1 \) | \(91 = ( 18 - 5 ) \cdot 7 \) | \(92 = 85 \cdot 1 + 7 \) |
\(93 = 15 + 78 \) | \(94 = ?\) | \(95 = 5! - 17 - 8 \) | \(96 = ( 17 - 5 ) \cdot 8 \) |
\(97 = 15 \cdot 7 - 8 \) | \(98 = ( \sqrt{81} + 5 ) \cdot 7 \) | \(99 = 5! - \sqrt{\sqrt{81}} \cdot 7 \) | \(100 = \sqrt{\sqrt{7^{8}}} + 51 \) |