\(1 = 15^{6 - 6 }\) | \(2 = \sqrt{65 - 61 }\) | \(3 = \sqrt{\sqrt{\sqrt{6561 }}}\) | \(4 = 65 - 61 \) |
\(5 = 61 - 56 \) | \(6 = \sqrt{\sqrt{\sqrt{6561 }}}!\) | \(7 = \sqrt{65 - 16 }\) | \(8 = \frac{ 56 }{ 1 + 6 }\) |
\(9 = \sqrt{\sqrt{6561 }}\) | \(10 = ( 6 - \sqrt{16} ) \cdot 5 \) | \(11 = \frac{ 61 + 5 }{ 6 }\) | \(12 = \frac{ 5! }{ 16 - 6 }\) |
\(13 = \frac{ 65 }{ 6 - 1 }\) | \(14 = \frac{ 56 }{ \sqrt{16 } }\) | \(15 = 66 - 51 \) | \(16 = \frac{ 6 }{ 6 } + 15 \) |
\(17 = 16 - 5 + 6 \) | \(18 = \sqrt{15 - 6} \cdot 6 \) | \(19 = \sqrt{16} \cdot 6 - 5 \) | \(20 = \frac{ \sqrt{16}! \cdot 5 }{ 6 }\) |
\(21 = 6 \cdot 6 - 15 \) | \(22 = \frac{ 6! }{ 5! } + 16 \) | \(23 = 5 \cdot 6 - 1 - 6 \) | \(24 = ( 65 - 61 )!\) |
\(25 = 5^{6 - \sqrt{16 }}\) | \(26 = \frac{ 156 }{ 6 }\) | \(27 = 15 + 6 + 6 \) | \(28 = \frac{ 56 }{ \sqrt{\sqrt{16 }} }\) |
\(29 = \sqrt{16} \cdot 6 + 5 \) | \(30 = ( 6 - 1^{5} ) \cdot 6 \) | \(31 = 61 - 5 \cdot 6 \) | \(32 = 56 - \sqrt{16 }!\) |
\(33 = \frac{ 66 }{ \sqrt{5 - 1 } }\) | \(34 = 5 \cdot 6 + \sqrt{16 }\) | \(35 = 5 \cdot 6 - 1 + 6 \) | \(36 = \frac{ 5! }{ 6 } + 16 \) |
\(37 = 5 \cdot 6 + 1 + 6 \) | \(38 = \sqrt{\sqrt{16}}^{5} + 6 \) | \(39 = 51 - 6 - 6 \) | \(40 = 56 - 16 \) |
\(41 = 65 - \sqrt{16 }!\) | \(42 = \frac{ 6! }{ 15 } - 6 \) | \(43 = \frac{ \sqrt{6^{6}} - 1 }{ 5 }\) | \(44 = ( 5 + 6 ) \cdot \sqrt{16 }\) |
\(45 = \frac{ 5! \cdot 6 }{ 16 }\) | \(46 = 166 - 5 !\) | \(47 = ( 1 + 6 ) \cdot 6 + 5 \) | \(48 = \sqrt{65 - 1} \cdot 6 \) |
\(49 = 65 - 16 \) | \(50 = ( 16 - 6 ) \cdot 5 \) | \(51 = 66 - 15 \) | \(52 = 56 - \sqrt{16 }\) |
\(53 = 5! - 61 - 6 \) | \(54 = ( 15 - 6 ) \cdot 6 \) | \(55 = 56 - 1^{6 }\) | \(56 = 1^{6} \cdot 56 \) |
\(57 = 1^{6} + 56 \) | \(58 = 65 - 1 - 6 \) | \(59 = 65 \cdot 1 - 6 \) | \(60 = \sqrt{16} + 56 \) |
\(61 = 65 - \sqrt{16 }\) | \(62 = 56 \cdot 1 + 6 \) | \(63 = 51 + 6 + 6 \) | \(64 = 65 - 1^{6 }\) |
\(65 = 1^{6} \cdot 65 \) | \(66 = ( 16 - 5 ) \cdot 6 \) | \(67 = 1^{5} + 66 \) | \(68 = \sqrt{5 - 1} + 66 \) |
\(69 = 6! - 651 \) | \(70 = 65 - 1 + 6 \) | \(71 = 65 \cdot 1 + 6 \) | \(72 = 16 + 56 \) |
\(73 = \sqrt{\frac{ 6! }{ 5 }} + 61 \) | \(74 = 16 \cdot 5 - 6 \) | \(75 = 5! - \frac{ 6! }{ 16 }\) | \(76 = \sqrt{5 \cdot 6!} + 16 \) |
\(77 = ( 1 + 6 ) \cdot ( 5 + 6 )\) | \(78 = 5! - ( 1 + 6 ) \cdot 6 \) | \(79 = ?\) | \(80 = \sqrt{16}! + 56 \) |
\(81 = \sqrt{6561 }\) | \(82 = ?\) | \(83 = \frac{ 6! }{ 5 } - 61 \) | \(84 = 15 \cdot 6 - 6 \) |
\(85 = 5! - ( 6 \cdot 6 - 1 )\) | \(86 = \frac{ 516 }{ 6 }\) | \(87 = 6 \cdot 6 + 51 \) | \(88 = ?\) |
\(89 = \sqrt{16}! + 65 \) | \(90 = \sqrt{6 \cdot 6} \cdot 15 \) | \(91 = 16 \cdot 6 - 5 \) | \(92 = ?\) |
\(93 = ?\) | \(94 = ?\) | \(95 = 6! - 5^{\sqrt{16 }}\) | \(96 = 15 \cdot 6 + 6 \) |
\(97 = \sqrt{6^{6}} + 1 - 5 !\) | \(98 = 5! - 16 - 6 \) | \(99 = \frac{ 6! - 5! }{ 6 } - 1 \) | \(100 = \frac{ ( 6 - 1 ) \cdot 5! }{ 6 }\) |