\(1 = \frac{ 14 - 7 }{ 7 }\) | \(2 = \frac{ 14 }{ \sqrt{7 \cdot 7 } }\) | \(3 = 74 - 71 \) | \(4 = \sqrt{71 - 7} - 4 \) |
\(5 = 7 - \frac{ 14 }{ 7 }\) | \(6 = \sqrt{77 - 41 }\) | \(7 = \sqrt{7^{\frac{ 14 }{ 7 }}}\) | \(8 = \sqrt{17 + 47 }\) |
\(9 = \frac{ 14 }{ 7 } + 7 \) | \(10 = \sqrt{74 + 7} + 1 \) | \(11 = 4 \cdot 7 - 17 \) | \(12 = 17 + \sqrt{4} - 7 \) |
\(13 = 14 - \frac{ 7 }{ 7 }\) | \(14 = \frac{ 14 }{ 7 } \cdot 7 \) | \(15 = \frac{ 7 }{ 7 } + 14 \) | \(16 = \frac{ 71 - 7 }{ 4 }\) |
\(17 = 4 - 1 + 7 + 7 \) | \(18 = 1 \cdot 4 + 7 + 7 \) | \(19 = \frac{ 77 - 1 }{ 4 }\) | \(20 = 17 - 4 + 7 \) |
\(21 = \frac{ 147 }{ 7 }\) | \(22 = 17 - \sqrt{4} + 7 \) | \(23 = ( 7 - 4 )! + 17 \) | \(24 = 71 - 47 \) |
\(25 = ( 1 + 7 ) \cdot 4 - 7 \) | \(26 = 17 + \sqrt{4} + 7 \) | \(27 = 41 - 7 - 7 \) | \(28 = 14 + 7 + 7 \) |
\(29 = 1^{7} + 4 \cdot 7 \) | \(30 = 47 - 17 \) | \(31 = \sqrt{4} \cdot 7 + 17 \) | \(32 = 7^{\sqrt{4}} - 17 \) |
\(33 = ?\) | \(34 = 17 + 4! - 7 \) | \(35 = 7 \cdot 7 - 14 \) | \(36 = 77 - 41 \) |
\(37 = 4! - 1 + 7 + 7 \) | \(38 = \frac{ 77 - 1 }{ \sqrt{4 } }\) | \(39 = 47 - 1 - 7 \) | \(40 = ( 17 - 7 ) \cdot 4 \) |
\(41 = 41 - 7 + 7 \) | \(42 = \frac{ 7 }{ 7 } + 41 \) | \(43 = 71 - 4 \cdot 7 \) | \(44 = 7 \cdot 7 - 1 - 4 \) |
\(45 = 4 \cdot 7 + 17 \) | \(46 = 47 - 1^{7 }\) | \(47 = 1^{7} \cdot 47 \) | \(48 = 1^{7} + 47 \) |
\(49 = 7^{\frac{ 14 }{ 7 }}\) | \(50 = 1^{4} + 7 \cdot 7 \) | \(51 = ( 7 - 4 ) \cdot 17 \) | \(52 = 77 - 1 - 4 !\) |
\(53 = 47 - 1 + 7 \) | \(54 = 47 \cdot 1 + 7 \) | \(55 = 41 + 7 + 7 \) | \(56 = ( 1^{4} + 7 ) \cdot 7 \) |
\(57 = 74 - 17 \) | \(58 = ( 1 + 7 ) \cdot 7 + \sqrt{4 }\) | \(59 = ?\) | \(60 = 71 - 4 - 7 \) |
\(61 = 17 \cdot 4 - 7 \) | \(62 = 71 - \sqrt{4} - 7 \) | \(63 = 77 - 14 \) | \(64 = 17 + 47 \) |
\(65 = 71 - ( 7 - 4 )!\) | \(66 = 74 - 1 - 7 \) | \(67 = 74 \cdot 1 - 7 \) | \(68 = 71 + 4 - 7 \) |
\(69 = \sqrt{1^{7} + 7!} - \sqrt{4 }\) | \(70 = ( 4 - 1 + 7 ) \cdot 7 \) | \(71 = 77 - ( 4 - 1 )!\) | \(72 = 77 - 1 - 4 \) |
\(73 = 74 - 1^{7 }\) | \(74 = 71 - 4 + 7 \) | \(75 = 17 \cdot 4 + 7 \) | \(76 = 77 - 1^{4 }\) |
\(77 = 1^{4} \cdot 77 \) | \(78 = 1^{4} + 77 \) | \(79 = 77 \cdot 1 + \sqrt{4 }\) | \(80 = 74 - 1 + 7 \) |
\(81 = 74 \cdot 1 + 7 \) | \(82 = 71 + 4 + 7 \) | \(83 = ( 4 - 1 )! + 77 \) | \(84 = ( 1 + 4 + 7 ) \cdot 7 \) |
\(85 = ( 7 - \sqrt{4} ) \cdot 17 \) | \(86 = ?\) | \(87 = ?\) | \(88 = 71 + 4! - 7 \) |
\(89 = ?\) | \(90 = 7 \cdot 7 + 41 \) | \(91 = 14 + 77 \) | \(92 = ?\) |
\(93 = ?\) | \(94 = ?\) | \(95 = 17 \cdot 7 - 4 !\) | \(96 = ( 17 + 7 ) \cdot 4 \) |
\(97 = 4! \cdot 7 - 71 \) | \(98 = \sqrt{7 \cdot 7} \cdot 14 \) | \(99 = 4 \cdot 7 + 71 \) | \(100 = ( 17 - 7 )^{\sqrt{4 }}\) |