\(1 = 14^{5 - 5 }\) | \(2 = 5 - \sqrt{14 - 5 }\) | \(3 = \frac{ 45 }{ 15 }\) | \(4 = 14 - 5 - 5 \) |
\(5 = \frac{ 15 + 5 }{ 4 }\) | \(6 = 51 - 45 \) | \(7 = \frac{ 15 }{ 5 } + 4 \) | \(8 = \frac{ 45 }{ 5 } - 1 \) |
\(9 = \frac{ 45 \cdot 1 }{ 5 }\) | \(10 = \frac{ 45 }{ 5 } + 1 \) | \(11 = 5 \cdot 5 - 14 \) | \(12 = \frac{ 15 \cdot 4 }{ 5 }\) |
\(13 = 14 - \frac{ 5 }{ 5 }\) | \(14 = 55 - 41 \) | \(15 = \frac{ 5 }{ 5 } + 14 \) | \(16 = 15 - 4 + 5 \) |
\(17 = \sqrt{4}^{5} - 15 \) | \(18 = 15 - \sqrt{4} + 5 \) | \(19 = \sqrt{5 \cdot 5} + 14 \) | \(20 = ( 15 - 5 ) \cdot \sqrt{4 }\) |
\(21 = 4! - \frac{ 15 }{ 5 }\) | \(22 = 15 + \sqrt{4} + 5 \) | \(23 = \frac{ 51 - 5 }{ \sqrt{4 } }\) | \(24 = 14 + 5 + 5 \) |
\(25 = 145 - 5 !\) | \(26 = 51 - 5^{\sqrt{4 }}\) | \(27 = \frac{ 15 }{ 5 } + 4 !\) | \(28 = \frac{ 51 + 5 }{ \sqrt{4 } }\) |
\(29 = \frac{ 145 }{ 5 }\) | \(30 = 45 - 15 \) | \(31 = 41 - 5 - 5 \) | \(32 = \frac{ 5! }{ 15 } \cdot 4 \) |
\(33 = 4! - 1 + 5 + 5 \) | \(34 = 154 - 5 !\) | \(35 = 4 \cdot 5 + 15 \) | \(36 = 41 - \sqrt{5 \cdot 5 }\) |
\(37 = ( 1 \cdot \sqrt{4} )^{5} + 5 \) | \(38 = \frac{ 5! }{ 5 } + 14 \) | \(39 = 54 - 15 \) | \(40 = ( 15 - 5 ) \cdot 4 \) |
\(41 = 55 - 14 \) | \(42 = \frac{ 5 }{ 5 } + 41 \) | \(43 = 45 - \sqrt{5 - 1 }\) | \(44 = 45 - 1^{5 }\) |
\(45 = ( 14 - 5 ) \cdot 5 \) | \(46 = 1^{5} + 45 \) | \(47 = \sqrt{4}^{5} + 15 \) | \(48 = 54 - 1 - 5 \) |
\(49 = 45 - 1 + 5 \) | \(50 = 45 \cdot 1 + 5 \) | \(51 = 41 + 5 + 5 \) | \(52 = 51 - 4 + 5 \) |
\(53 = 54 - 1^{5 }\) | \(54 = 1^{5} \cdot 54 \) | \(55 = ( 15 - 4 ) \cdot 5 \) | \(56 = 1^{4} + 55 \) |
\(57 = 55 \cdot 1 + \sqrt{4 }\) | \(58 = 54 - 1 + 5 \) | \(59 = 54 \cdot 1 + 5 \) | \(60 = 15 + 45 \) |
\(61 = \sqrt{4} \cdot 5 + 51 \) | \(62 = \frac{ 5 - 1 + 5! }{ \sqrt{4 } }\) | \(63 = \sqrt{4! + 5!} + 51 \) | \(64 = 4^{\frac{ 15 }{ 5 }}\) |
\(65 = 14 \cdot 5 - 5 \) | \(66 = 5 \cdot 5 + 41 \) | \(67 = 5! - ( 54 - 1 )\) | \(68 = ?\) |
\(69 = 14 + 55 \) | \(70 = \sqrt{5 \cdot 5} \cdot 14 \) | \(71 = 15 \cdot 5 - 4 \) | \(72 = \frac{ 15 \cdot 4! }{ 5 }\) |
\(73 = 15 \cdot 5 - \sqrt{4 }\) | \(74 = 5! - ( 41 + 5 )\) | \(75 = 14 \cdot 5 + 5 \) | \(76 = 5! - ( 45 - 1 )\) |
\(77 = 15 \cdot 5 + \sqrt{4 }\) | \(78 = ( 5 - 1 )! + 54 \) | \(79 = 15 \cdot 5 + 4 \) | \(80 = ( 15 + 5 ) \cdot 4 \) |
\(81 = ( \frac{ 15 }{ 5 } )^{4 }\) | \(82 = ?\) | \(83 = \frac{ 415 }{ 5 }\) | \(84 = 5! - ( 41 - 5 )\) |
\(85 = ( 15 + \sqrt{4} ) \cdot 5 \) | \(86 = ?\) | \(87 = 5! - ( \sqrt{4}^{5} + 1 )\) | \(88 = 5! - ( 1 \cdot \sqrt{4} )^{5 }\) |
\(89 = 5! - ( \frac{ 5! }{ 4 } + 1 )\) | \(90 = \sqrt{5 - 1} \cdot 45 \) | \(91 = ( 5 - 1 ) \cdot 4! - 5 \) | \(92 = ( 51 - 5 ) \cdot \sqrt{4 }\) |
\(93 = 5! - ( 51 - 4 ! )\) | \(94 = ( 4! - 5 ) \cdot 5 - 1 \) | \(95 = ( 14 + 5 ) \cdot 5 \) | \(96 = 41 + 55 \) |
\(97 = 51 \cdot \sqrt{4} - 5 \) | \(98 = 5! - ( 4! - \sqrt{5 - 1 } )\) | \(99 = 15 \cdot 5 + 4 !\) | \(100 = ( 15 - 5 )^{\sqrt{4 }}\) |