\(1 = 1^{\sqrt{484 }}\) | \(2 = 14 - 4 - 8 \) | \(3 = \frac{ 14 - 8 }{ \sqrt{4 } }\) | \(4 = \sqrt{144} - 8 \) |
\(5 = \sqrt{\sqrt{841} - 4 }\) | \(6 = \frac{ 84 }{ 14 }\) | \(7 = 48 - 41 \) | \(8 = 14 + \sqrt{4} - 8 \) |
\(9 = 41 - 4 \cdot 8 \) | \(10 = 14 + 4 - 8 \) | \(11 = \frac{ 48 }{ 4 } - 1 \) | \(12 = \sqrt{148 - 4 }\) |
\(13 = \sqrt{441} - 8 \) | \(14 = \sqrt{14^{\frac{ 8 }{ 4 }}}\) | \(15 = \frac{ 14 }{ \sqrt{4} } + 8 \) | \(16 = \frac{ 8 }{ 4 } + 14 \) |
\(17 = 18 - \frac{ 4 }{ 4 }\) | \(18 = \frac{ 144 }{ 8 }\) | \(19 = \frac{ 4 }{ 4 } + 18 \) | \(20 = \sqrt{144} + 8 \) |
\(21 = \sqrt{484} - 1 \) | \(22 = \sqrt{484} \cdot 1 \) | \(23 = \sqrt{484} + 1 \) | \(24 = ( 14 - 8 ) \cdot 4 \) |
\(25 = \sqrt{841} - 4 \) | \(26 = 44 - 18 \) | \(27 = \sqrt{841} - \sqrt{4 }\) | \(28 = \frac{ 14 \cdot 8 }{ 4 }\) |
\(29 = \sqrt{441} + 8 \) | \(30 = 14 + 4! - 8 \) | \(31 = \sqrt{841} + \sqrt{4 }\) | \(32 = 18 \cdot \sqrt{4} - 4 \) |
\(33 = \sqrt{841} + 4 \) | \(34 = 48 - 14 \) | \(35 = 44 - \sqrt{81 }\) | \(36 = 44 \cdot 1 - 8 \) |
\(37 = \frac{ 148 }{ 4 }\) | \(38 = ( 8 - 4 )! + 14 \) | \(39 = 41 - \frac{ 8 }{ 4 }\) | \(40 = 18 \cdot \sqrt{4} + 4 \) |
\(41 = 44 - \sqrt{\sqrt{81 }}\) | \(42 = \frac{ 14 \cdot 4! }{ 8 }\) | \(43 = 84 - 41 \) | \(44 = 1^{8} \cdot 44 \) |
\(45 = 41 - 4 + 8 \) | \(46 = \frac{ 184 }{ 4 }\) | \(47 = 48 - 1^{4 }\) | \(48 = 14 \cdot 4 - 8 \) |
\(49 = 1^{4} + 48 \) | \(50 = 8^{\sqrt{4}} - 14 \) | \(51 = 44 - 1 + 8 \) | \(52 = 44 \cdot 1 + 8 \) |
\(53 = 44 + \sqrt{81 }\) | \(54 = ( 4 - 1 )! + 48 \) | \(55 = 81 - 4! - \sqrt{4 }\) | \(56 = ( 8 - 4 ) \cdot 14 \) |
\(57 = 41 + 4! - 8 \) | \(58 = \sqrt{841 \cdot 4 }\) | \(59 = 84 - 1 - 4 !\) | \(60 = 84 \cdot 1 - 4 !\) |
\(61 = 81 - 4! + 4 \) | \(62 = 14 + 48 \) | \(63 = ( 4 + 4 ) \cdot 8 - 1 \) | \(64 = 14 \cdot 4 + 8 \) |
\(65 = 81 - 4 \cdot 4 \) | \(66 = ( 41 - 8 ) \cdot \sqrt{4 }\) | \(67 = 8^{\sqrt{4}} - 1 + 4 \) | \(68 = 18 \cdot 4 - 4 \) |
\(69 = 81 - \frac{ 4! }{ \sqrt{4 } }\) | \(70 = 84 - 14 \) | \(71 = 48 - 1 + 4 !\) | \(72 = \sqrt{4 \cdot 4} \cdot 18 \) |
\(73 = 4 \cdot 8 + 41 \) | \(74 = \frac{ 148 }{ \sqrt{4 } }\) | \(75 = 81 - 4 - \sqrt{4 }\) | \(76 = 18 \cdot 4 + 4 \) |
\(77 = 81 - \sqrt{4 \cdot 4 }\) | \(78 = 8^{\sqrt{4}} + 14 \) | \(79 = 84 - 1 - 4 \) | \(80 = ( 14 - 4 ) \cdot 8 \) |
\(81 = 81 - 4 + 4 \) | \(82 = \frac{ 41 \cdot 8 }{ 4 }\) | \(83 = 84 - 1^{4 }\) | \(84 = 1^{4} \cdot 84 \) |
\(85 = 1^{4} + 84 \) | \(86 = 84 \cdot 1 + \sqrt{4 }\) | \(87 = 84 - 1 + 4 \) | \(88 = ( 14 + 8 ) \cdot 4 \) |
\(89 = 41 + 48 \) | \(90 = 41 \cdot \sqrt{4} + 8 \) | \(91 = \frac{ ( \sqrt{4} + 4 )! }{ 8 } + 1 \) | \(92 = \frac{ 184 }{ \sqrt{4 } }\) |
\(93 = \frac{ 4! }{ \sqrt{4} } + 81 \) | \(94 = ( 48 - 1 ) \cdot \sqrt{4 }\) | \(95 = 48 \cdot \sqrt{4} - 1 \) | \(96 = \sqrt{144} \cdot 8 \) |
\(97 = 4 \cdot 4 + 81 \) | \(98 = 14 + 84 \) | \(99 = 4 \cdot 4! + \sqrt{\sqrt{81 }}\) | \(100 = \sqrt{\sqrt{( 14 - 4 )^{8 }}}\) |