\(1 = 17^{4 - 4 }\) | \(2 = 4 - \frac{ 14 }{ 7 }\) | \(3 = \frac{ \sqrt{441} }{ 7 }\) | \(4 = \frac{ 14 \cdot \sqrt{4} }{ 7 }\) |
\(5 = \sqrt{144} - 7 \) | \(6 = 47 - 41 \) | \(7 = \sqrt{14 \cdot 4 - 7 }\) | \(8 = \frac{ 14 \cdot 4 }{ 7 }\) |
\(9 = 17 - 4 - 4 \) | \(10 = 41 - 4! - 7 \) | \(11 = 14 + 4 - 7 \) | \(12 = \frac{ 41 + 7 }{ 4 }\) |
\(13 = 41 - 4 \cdot 7 \) | \(14 = \sqrt{441} - 7 \) | \(15 = 17 - 4 + \sqrt{4 }\) | \(16 = ( \frac{ 14 }{ 7 } )^{4 }\) |
\(17 = 14 - 4 + 7 \) | \(18 = \frac{ 4 }{ 4 } + 17 \) | \(19 = \sqrt{144} + 7 \) | \(20 = ( 7 - 4 )! + 14 \) |
\(21 = \sqrt{417 + 4 !}\) | \(22 = 4! - \frac{ 14 }{ 7 }\) | \(23 = 14 + \sqrt{4} + 7 \) | \(24 = 41 - 4! + 7 \) |
\(25 = 14 + 4 + 7 \) | \(26 = \frac{ 14 }{ 7 } + 4 !\) | \(27 = 44 - 17 \) | \(28 = \sqrt{441} + 7 \) |
\(29 = 1^{4} + 4 \cdot 7 \) | \(30 = 41 - 4 - 7 \) | \(31 = 14 + 4! - 7 \) | \(32 = 41 - \sqrt{4} - 7 \) |
\(33 = 47 - 14 \) | \(34 = \frac{ 17 \cdot 4 }{ \sqrt{4 } }\) | \(35 = \frac{ 7! }{ 144 }\) | \(36 = 44 - 1 - 7 \) |
\(37 = 44 \cdot 1 - 7 \) | \(38 = 41 + 4 - 7 \) | \(39 = ( 1 + 4 ) \cdot 7 + 4 \) | \(40 = ( 4 - 1 + 7 ) \cdot 4 \) |
\(41 = 47 - ( 4 - 1 )!\) | \(42 = ( 7 - 4 ) \cdot 14 \) | \(43 = 44 - 1^{7 }\) | \(44 = 41 - 4 + 7 \) |
\(45 = 1^{7} + 44 \) | \(46 = 47 - 1^{4 }\) | \(47 = 1^{4} \cdot 47 \) | \(48 = 1^{4} + 47 \) |
\(49 = 14 \cdot 4 - 7 \) | \(50 = 44 - 1 + 7 \) | \(51 = 44 \cdot 1 + 7 \) | \(52 = ( 17 - 4 ) \cdot 4 \) |
\(53 = ( 4 - 1 )! + 47 \) | \(54 = ( 4 \cdot 7 - 1 ) \cdot \sqrt{4 }\) | \(55 = 71 - 4 \cdot 4 \) | \(56 = ( 1 \cdot 4 + 4 ) \cdot 7 \) |
\(57 = 4^{4 - 1} - 7 \) | \(58 = 41 + 4! - 7 \) | \(59 = 71 - \frac{ 4! }{ \sqrt{4 } }\) | \(60 = 74 - 14 \) |
\(61 = 14 + 47 \) | \(62 = ( ( 1 \cdot 4 )! + 7 ) \cdot \sqrt{4 }\) | \(63 = \frac{ 441 }{ 7 }\) | \(64 = 17 \cdot 4 - 4 \) |
\(65 = 71 - 4 - \sqrt{4 }\) | \(66 = 17 \cdot 4 - \sqrt{4 }\) | \(67 = 71 - \sqrt{4 \cdot 4 }\) | \(68 = \sqrt{4 \cdot 4} \cdot 17 \) |
\(69 = 4 \cdot 7 + 41 \) | \(70 = ( 14 - 4 ) \cdot 7 \) | \(71 = 71 - 4 + 4 \) | \(72 = 17 \cdot 4 + 4 \) |
\(73 = 74 - 1^{4 }\) | \(74 = 1^{4} \cdot 74 \) | \(75 = 1^{4} + 74 \) | \(76 = ( 17 + \sqrt{4} ) \cdot 4 \) |
\(77 = 74 - 1 + 4 \) | \(78 = 74 \cdot 1 + 4 \) | \(79 = 71 + 4 + 4 \) | \(80 = ( 4 - 1 )! + 74 \) |
\(81 = ( 7 - 1 \cdot 4 )^{4 }\) | \(82 = ( 7 - 4 )^{4} + 1 \) | \(83 = \frac{ 4! }{ \sqrt{4} } + 71 \) | \(84 = \sqrt{144} \cdot 7 \) |
\(85 = ( 4! - 1 ) \cdot 4 - 7 \) | \(86 = \frac{ \sqrt{\sqrt{\sqrt{7^{4!}}}} + 1 }{ 4 }\) | \(87 = \frac{ 174 }{ \sqrt{4 } }\) | \(88 = 14 + 74 \) |
\(89 = 41 \cdot \sqrt{4} + 7 \) | \(90 = \frac{ 7! }{ 14 \cdot 4 }\) | \(91 = 71 - 4 + 4 !\) | \(92 = 17 \cdot 4 + 4 !\) |
\(93 = 47 \cdot \sqrt{4} - 1 \) | \(94 = 14 \cdot 7 - 4 \) | \(95 = 47 \cdot \sqrt{4} + 1 \) | \(96 = 14 \cdot 7 - \sqrt{4 }\) |
\(97 = 74 - 1 + 4 !\) | \(98 = 74 \cdot 1 + 4 !\) | \(99 = 71 + 4 + 4 !\) | \(100 = 14 \cdot 7 + \sqrt{4 }\) |