\(1 = \frac{ \frac{ 16 }{ 4 } }{ 4 }\) | \(2 = \frac{ \sqrt{144} }{ 6 }\) | \(3 = \frac{ 14 + 4 }{ 6 }\) | \(4 = 14 - 4 - 6 \) |
\(5 = 46 - 41 \) | \(6 = \sqrt{144} - 6 \) | \(7 = \frac{ 14 }{ 6 - 4 }\) | \(8 = \frac{ 16 }{ 4 } + 4 \) |
\(9 = 1^{4} + \sqrt{64 }\) | \(10 = 4 \cdot 6 - 14 \) | \(11 = \frac{ 44 }{ \sqrt{16 } }\) | \(12 = 14 + 4 - 6 \) |
\(13 = \frac{ 14 }{ \sqrt{4} } + 6 \) | \(14 = \sqrt{14^{6 - 4 }}\) | \(15 = \sqrt{441} - 6 \) | \(16 = 14 - 4 + 6 \) |
\(17 = 61 - 44 \) | \(18 = \sqrt{144} + 6 \) | \(19 = 4 \cdot 6 - 1 - 4 \) | \(20 = 44 - \sqrt{16 }!\) |
\(21 = \frac{ 14 \cdot 6 }{ 4 }\) | \(22 = 14 + \sqrt{64 }\) | \(23 = 64 - 41 \) | \(24 = \frac{ 144 }{ 6 }\) |
\(25 = 1^{4} + 4 \cdot 6 \) | \(26 = \sqrt{4} \cdot 6 + 14 \) | \(27 = \sqrt{441} + 6 \) | \(28 = 44 - 16 \) |
\(29 = 41 - \sqrt{4} \cdot 6 \) | \(30 = ( 1^{4} + 4 ) \cdot 6 \) | \(31 = 41 - 4 - 6 \) | \(32 = 46 - 14 \) |
\(33 = 41 - \sqrt{64 }\) | \(34 = 14 \cdot \sqrt{4} + 6 \) | \(35 = 4 \cdot 4! - 61 \) | \(36 = 16 - 4 + 4 !\) |
\(37 = 44 - 1 - 6 \) | \(38 = 4 \cdot 6 + 14 \) | \(39 = 41 + 4 - 6 \) | \(40 = 44 - \sqrt{16 }\) |
\(41 = \frac{ 164 }{ 4 }\) | \(42 = 46 \cdot 1 - 4 \) | \(43 = 41 - 4 + 6 \) | \(44 = 1^{6} \cdot 44 \) |
\(45 = 1^{6} + 44 \) | \(46 = 1^{4} \cdot 46 \) | \(47 = 1^{4} + 46 \) | \(48 = \sqrt{16} + 44 \) |
\(49 = 41 + \sqrt{64 }\) | \(50 = 64 - 14 \) | \(51 = 41 + 4 + 6 \) | \(52 = ( 4 - 1 )! + 46 \) |
\(53 = 61 - 4 - 4 \) | \(54 = ( 1 + 4 + 4 ) \cdot 6 \) | \(55 = 61 - 4 - \sqrt{4 }\) | \(56 = \frac{ 14 \cdot 4! }{ 6 }\) |
\(57 = 61 - \sqrt{4 \cdot 4 }\) | \(58 = 64 - ( 4 - 1 )!\) | \(59 = 64 - 1 - 4 \) | \(60 = 14 + 46 \) |
\(61 = 61 - 4 + 4 \) | \(62 = 14 \cdot 4 + 6 \) | \(63 = 64 - 1^{4 }\) | \(64 = 1^{4} \cdot 64 \) |
\(65 = 4 \cdot 6 + 41 \) | \(66 = 16 \cdot 4 + \sqrt{4 }\) | \(67 = 64 - 1 + 4 \) | \(68 = 16 \cdot 4 + 4 \) |
\(69 = \frac{ 414 }{ 6 }\) | \(70 = ( 41 - 6 ) \cdot \sqrt{4 }\) | \(71 = 41 + 4! + 6 \) | \(72 = \sqrt{144} \cdot 6 \) |
\(73 = \frac{ 146 }{ \sqrt{4 } }\) | \(74 = ( 1 + 4 )! - 46 \) | \(75 = ( 4 - 1 )^{4} - 6 \) | \(76 = 41 \cdot \sqrt{4} - 6 \) |
\(77 = 4 \cdot 4 + 61 \) | \(78 = 14 + 64 \) | \(79 = ?\) | \(80 = ( 14 + 6 ) \cdot 4 \) |
\(81 = 61 - 4 + 4 !\) | \(82 = \frac{ 164 }{ \sqrt{4 } }\) | \(83 = 61 - \sqrt{4} + 4 !\) | \(84 = \sqrt{14^{\sqrt{4}}} \cdot 6 \) |
\(85 = \sqrt{4 \cdot 4}! + 61 \) | \(86 = 14 \cdot 6 + \sqrt{4 }\) | \(87 = 41 + 46 \) | \(88 = 14 \cdot 6 + 4 \) |
\(89 = 61 + 4 + 4 !\) | \(90 = ( 46 - 1 ) \cdot \sqrt{4 }\) | \(91 = 46 \cdot \sqrt{4} - 1 \) | \(92 = 46 \cdot 1 \cdot \sqrt{4 }\) |
\(93 = 46 \cdot \sqrt{4} + 1 \) | \(94 = ( 41 + 6 ) \cdot \sqrt{4 }\) | \(95 = 4 \cdot 4 \cdot 6 - 1 \) | \(96 = ( 14 + \sqrt{4} ) \cdot 6 \) |
\(97 = 4 \cdot 4 \cdot 6 + 1 \) | \(98 = 61 \cdot \sqrt{4} - 4 !\) | \(99 = ( 4 + 6 )^{\sqrt{4}} - 1 \) | \(100 = ( 4 \cdot 6 + 1 ) \cdot 4 \) |