\(1 = ( 5 - 4 )^{14 }\) | \(2 = \sqrt{45 - 41 }\) | \(3 = \sqrt{\frac{ 41 + 4 }{ 5 }}\) | \(4 = 45 - 41 \) |
\(5 = 14 - 4 - 5 \) | \(6 = 4 \cdot 5 - 14 \) | \(7 = 51 - 44 \) | \(8 = \sqrt{15 \cdot 4 + 4 }\) |
\(9 = \frac{ 41 + 4 }{ 5 }\) | \(10 = \frac{ 5! }{ \sqrt{144 } }\) | \(11 = \sqrt{145 - 4 !}\) | \(12 = \frac{ 14 }{ \sqrt{4} } + 5 \) |
\(13 = 54 - 41 \) | \(14 = ( 5 - 4 ) \cdot 14 \) | \(15 = 14 - 4 + 5 \) | \(16 = \sqrt{441} - 5 \) |
\(17 = \sqrt{144} + 5 \) | \(18 = \frac{ 54 }{ 4 - 1 }\) | \(19 = \sqrt{4 \cdot 4} + 15 \) | \(20 = 44 - ( 5 - 1 )!\) |
\(21 = 41 - 4 \cdot 5 \) | \(22 = ( 15 - 4 ) \cdot \sqrt{4 }\) | \(23 = 14 + 4 + 5 \) | \(24 = 144 - 5 !\) |
\(25 = 5^{\frac{ 4 }{ 4 } + 1 }\) | \(26 = \sqrt{441} + 5 \) | \(27 = \frac{ 54 \cdot 1 }{ \sqrt{4 } }\) | \(28 = \frac{ 54 }{ \sqrt{4} } + 1 \) |
\(29 = 44 - 15 \) | \(30 = \frac{ 15 \cdot 4 }{ \sqrt{4 } }\) | \(31 = 45 - 14 \) | \(32 = 41 - 4 - 5 \) |
\(33 = 14 \cdot \sqrt{4} + 5 \) | \(34 = 4 \cdot 5 + 14 \) | \(35 = 51 - 4 \cdot 4 \) | \(36 = ( 14 - 5 ) \cdot 4 \) |
\(37 = ( 4 + 5 ) \cdot 4 + 1 \) | \(38 = 44 - 1 - 5 \) | \(39 = 44 \cdot 1 - 5 \) | \(40 = 54 - 14 \) |
\(41 = ( 5 - 4 ) \cdot 41 \) | \(42 = 41 - 4 + 5 \) | \(43 = 44 - 1^{5 }\) | \(44 = ( 15 - 4 ) \cdot 4 \) |
\(45 = 1^{5} + 44 \) | \(46 = 1^{4} + 45 \) | \(47 = 45 \cdot 1 + \sqrt{4 }\) | \(48 = 44 - 1 + 5 \) |
\(49 = 44 \cdot 1 + 5 \) | \(50 = ( 14 - 4 ) \cdot 5 \) | \(51 = 14 \cdot 4 - 5 \) | \(52 = \frac{ 4 }{ 4 } + 51 \) |
\(53 = 54 - 1^{4 }\) | \(54 = 1^{4} \cdot 54 \) | \(55 = 1^{4} + 54 \) | \(56 = 15 \cdot 4 - 4 \) |
\(57 = 54 - 1 + 4 \) | \(58 = 54 \cdot 1 + 4 \) | \(59 = 14 + 45 \) | \(60 = \sqrt{144} \cdot 5 \) |
\(61 = 14 \cdot 4 + 5 \) | \(62 = 15 \cdot 4 + \sqrt{4 }\) | \(63 = 15 + 4! + 4 !\) | \(64 = 15 \cdot 4 + 4 \) |
\(65 = 4^{5 - \sqrt{4}} + 1 \) | \(66 = 14 \cdot 5 - 4 \) | \(67 = 4 \cdot 4 + 51 \) | \(68 = 14 + 54 \) |
\(69 = 45 \cdot 1 + 4 !\) | \(70 = 41 + 4! + 5 \) | \(71 = \frac{ 5! }{ 4 } + 41 \) | \(72 = 14 \cdot 5 + \sqrt{4 }\) |
\(73 = \sqrt{4}^{5} + 41 \) | \(74 = 14 \cdot 5 + 4 \) | \(75 = 5! - ( 41 + 4 )\) | \(76 = ( 14 + 5 ) \cdot 4 \) |
\(77 = \frac{ 154 }{ \sqrt{4 } }\) | \(78 = 54 \cdot 1 + 4 !\) | \(79 = 4! \cdot 5 - 41 \) | \(80 = ( 14 + \sqrt{4} ) \cdot 5 \) |
\(81 = \sqrt{14 - 5}^{4 }\) | \(82 = 5! - ( 14 + 4 ! )\) | \(83 = 5! - ( 41 - 4 )\) | \(84 = 15 \cdot 4 + 4 !\) |
\(85 = ( 41 - 4! ) \cdot 5 \) | \(86 = 41 + 45 \) | \(87 = 41 \cdot \sqrt{4} + 5 \) | \(88 = \sqrt{5 - 1} \cdot 44 \) |
\(89 = 45 \cdot \sqrt{4} - 1 \) | \(90 = ( 14 + 4 ) \cdot 5 \) | \(91 = 45 \cdot \sqrt{4} + 1 \) | \(92 = ( 41 + 5 ) \cdot \sqrt{4 }\) |
\(93 = 5! - ( 4 - 1 + 4 ! )\) | \(94 = 14 \cdot 5 + 4 !\) | \(95 = 41 + 54 \) | \(96 = ( 1 + 5 ) \cdot 4 \cdot 4 \) |
\(97 = ( 4! - 1 ) \cdot 4 + 5 \) | \(98 = ( \sqrt{4} + 5 ) \cdot 14 \) | \(99 = 5! - \sqrt{441 }\) | \(100 = ( 1 + 4 ) \cdot 4 \cdot 5 \) |