\(1 = 7 - ( 13 - 7 )\) | \(2 = 73 - 71 \) | \(3 = 3!! - 717 \) | \(4 = 3 \cdot 7 - 17 \) |
\(5 = \sqrt{71 - 7} - 3 \) | \(6 = 13 - \sqrt{7 \cdot 7 }\) | \(7 = 17 - 3 - 7 \) | \(8 = \sqrt{77 - 13 }\) |
\(9 = \sqrt{71 + 3 + 7 }\) | \(10 = 7 - ( 1 + 3 ) + 7 \) | \(11 = \frac{ 71 + 3! }{ 7 }\) | \(12 = \sqrt{137 + 7 }\) |
\(13 = 13 - 7 + 7 \) | \(14 = \frac{ 7 }{ 7 } + 13 \) | \(15 = 17 - \sqrt{7 - 3 }\) | \(16 = 17 + 3! - 7 \) |
\(17 = 31 - 7 - 7 \) | \(18 = \sqrt{317 + 7 }\) | \(19 = \sqrt{7 - 3} + 17 \) | \(20 = 37 - 17 \) |
\(21 = 17 - 3 + 7 \) | \(22 = 1^{7} + 3 \cdot 7 \) | \(23 = ( \frac{ 7 }{ 7 } + 3 )! - 1 \) | \(24 = ( 3 \cdot 7 - 17 )!\) |
\(25 = 3! \cdot 7 - 17 \) | \(26 = \frac{ 71 + 7 }{ 3 }\) | \(27 = 13 + 7 + 7 \) | \(28 = ( 7 - 1 \cdot 3 ) \cdot 7 \) |
\(29 = 37 - 1 - 7 \) | \(30 = ( 17 - 7 ) \cdot 3 \) | \(31 = 31 - 7 + 7 \) | \(32 = \frac{ 7 }{ 7 } + 31 \) |
\(33 = ?\) | \(34 = 71 - 37 \) | \(35 = ( 7 - ( 3 - 1 ) ) \cdot 7 \) | \(36 = 7 \cdot 7 - 13 \) |
\(37 = 1^{7} \cdot 37 \) | \(38 = 3 \cdot 7 + 17 \) | \(39 = ( 7 - 1 + 7 ) \cdot 3 \) | \(40 = ?\) |
\(41 = ( 7 - 3 )! + 17 \) | \(42 = ( 13 - 7 ) \cdot 7 \) | \(43 = 37 - 1 + 7 \) | \(44 = 17 \cdot 3 - 7 \) |
\(45 = 31 + 7 + 7 \) | \(46 = 77 - 31 \) | \(47 = 71 - ( 7 - 3 )!\) | \(48 = \frac{ 7^{3} }{ 7 } - 1 \) |
\(49 = 7^{3 - 1^{7 }}\) | \(50 = 71 - 3 \cdot 7 \) | \(51 = 771 - 3 !!\) | \(52 = 1 \cdot 7 \cdot 7 + 3 \) |
\(53 = \frac{ 371 }{ 7 }\) | \(54 = 17 + 37 \) | \(55 = ( 1 + 7 ) \cdot 3! + 7 \) | \(56 = 73 - 17 \) |
\(57 = ?\) | \(58 = 17 \cdot 3 + 7 \) | \(59 = \frac{ 177 }{ 3 }\) | \(60 = ( 17 - 7 ) \cdot 3 !\) |
\(61 = 71 - 3 - 7 \) | \(62 = 7 \cdot 7 + 13 \) | \(63 = ( 3 - 1 + 7 ) \cdot 7 \) | \(64 = 77 - 13 \) |
\(65 = 73 - 1 - 7 \) | \(66 = 73 \cdot 1 - 7 \) | \(67 = 71 + 3 - 7 \) | \(68 = ( 7 - 3 ) \cdot 17 \) |
\(69 = 71 - \sqrt{7 - 3 }\) | \(70 = 71 + 3! - 7 \) | \(71 = ( 7 - 3! ) \cdot 71 \) | \(72 = ( 17 + 7 ) \cdot 3 \) |
\(73 = 1^{7} \cdot 73 \) | \(74 = 1^{7} + 73 \) | \(75 = 71 - 3 + 7 \) | \(76 = 77 - 1^{3 }\) |
\(77 = 1^{3} \cdot 77 \) | \(78 = 1^{3} + 77 \) | \(79 = 73 - 1 + 7 \) | \(80 = 7 \cdot 7 + 31 \) |
\(81 = 71 + 3 + 7 \) | \(82 = 77 - 1 + 3 !\) | \(83 = 77 \cdot 1 + 3 !\) | \(84 = 13 \cdot 7 - 7 \) |
\(85 = ( 7 + 7 ) \cdot 3! + 1 \) | \(86 = ?\) | \(87 = ?\) | \(88 = \sqrt{3^{1 + 7}} + 7 \) |
\(89 = ?\) | \(90 = 13 + 77 \) | \(91 = \sqrt{7 \cdot 7} \cdot 13 \) | \(92 = 3 \cdot 7 + 71 \) |
\(93 = ?\) | \(94 = ?\) | \(95 = 17 \cdot 3! - 7 \) | \(96 = \frac{ 1 + 3!! }{ 7 } - 7 \) |
\(97 = \frac{ 3!! }{ 1 + 7 } + 7 \) | \(98 = 13 \cdot 7 + 7 \) | \(99 = ?\) | \(100 = \sqrt{\sqrt{( 3 + 7 )^{1 + 7 }}}\) |