\(1 = 3 - \frac{ 14 }{ 7 }\) | \(2 = \frac{ 34 }{ 17 }\) | \(3 = 31 - 4 \cdot 7 \) | \(4 = 41 - 37 \) |
\(5 = \frac{ 13 + 7 }{ 4 }\) | \(6 = \frac{ 14 \cdot 3 }{ 7 }\) | \(7 = \sqrt{\frac{ 147 }{ 3 }}\) | \(8 = ( \frac{ 14 }{ 7 } )^{3 }\) |
\(9 = 3^{\frac{ 14 }{ 7 }}\) | \(10 = 13 + 4 - 7 \) | \(11 = 17 - 3 \cdot \sqrt{4 }\) | \(12 = \sqrt{147 - 3 }\) |
\(13 = \sqrt{173 - 4 }\) | \(14 = ( 7 - 3! ) \cdot 14 \) | \(15 = 4 \cdot 7 - 13 \) | \(16 = 47 - 31 \) |
\(17 = 34 - 17 \) | \(18 = 14 - 3 + 7 \) | \(19 = 13 \cdot \sqrt{4} - 7 \) | \(20 = 31 - 4 - 7 \) |
\(21 = \sqrt{147 \cdot 3 }\) | \(22 = 13 + \sqrt{4} + 7 \) | \(23 = 37 - 14 \) | \(24 = ( 41 - 37 )!\) |
\(25 = \frac{ 71 + 4 }{ 3 }\) | \(26 = 43 - 17 \) | \(27 = 34 \cdot 1 - 7 \) | \(28 = 71 - 43 \) |
\(29 = \frac{ 174 }{ 3 ! }\) | \(30 = 13 + 4! - 7 \) | \(31 = 41 - 3 - 7 \) | \(32 = 73 - 41 \) |
\(33 = 34 - 1^{7 }\) | \(34 = 47 - 13 \) | \(35 = 14 \cdot 3 - 7 \) | \(36 = 37 - 1^{4 }\) |
\(37 = 71 - 34 \) | \(38 = 1^{4} + 37 \) | \(39 = ( 7 - 4 ) \cdot 13 \) | \(40 = 34 - 1 + 7 \) |
\(41 = 4 \cdot 7 + 13 \) | \(42 = 31 + 4 + 7 \) | \(43 = 74 - 31 \) | \(44 = 1^{7} + 43 \) |
\(45 = 13 \cdot 4 - 7 \) | \(46 = 47 - 1^{3 }\) | \(47 = 17 \cdot 3 - 4 \) | \(48 = 1^{3} + 47 \) |
\(49 = \frac{ 147 }{ 3 }\) | \(50 = 43 \cdot 1 + 7 \) | \(51 = 14 + 37 \) | \(52 = 47 - 1 + 3 !\) |
\(53 = 17 \cdot 3 + \sqrt{4 }\) | \(54 = 41 + 3! + 7 \) | \(55 = 17 \cdot 3 + 4 \) | \(56 = ( 7 - 3 ) \cdot 14 \) |
\(57 = ( 17 + \sqrt{4} ) \cdot 3 \) | \(58 = \frac{ 174 }{ 3 }\) | \(59 = \frac{ 413 }{ 7 }\) | \(60 = 13 + 47 \) |
\(61 = 74 - 13 \) | \(62 = 3 \cdot 7 + 41 \) | \(63 = ( 13 - 4 ) \cdot 7 \) | \(64 = 3^{4} - 17 \) |
\(65 = 17 \cdot 4 - 3 \) | \(66 = 71 - 3 - \sqrt{4 }\) | \(67 = 13 \cdot 7 - 4 !\) | \(68 = 73 - 1 - 4 \) |
\(69 = 73 \cdot 1 - 4 \) | \(70 = 71 + 3 - 4 \) | \(71 = 17 \cdot 4 + 3 \) | \(72 = 71 - 3 + 4 \) |
\(73 = 1^{4} \cdot 73 \) | \(74 = 1^{4} + 73 \) | \(75 = 1^{3} + 74 \) | \(76 = 73 - 1 + 4 \) |
\(77 = ( 14 - 3 ) \cdot 7 \) | \(78 = 31 + 47 \) | \(79 = \sqrt{4}^{3} + 71 \) | \(80 = ( 13 + 7 ) \cdot 4 \) |
\(81 = 4^{3} + 17 \) | \(82 = \sqrt{7 - 3} \cdot 41 \) | \(83 = 3 \cdot 4 + 71 \) | \(84 = 1 \cdot 3 \cdot 4 \cdot 7 \) |
\(85 = ( 3 + \sqrt{4} ) \cdot 17 \) | \(86 = \frac{ 7^{3} + 1 }{ 4 }\) | \(87 = 13 + 74 \) | \(88 = ( 1 \cdot 3 )^{4} + 7 \) |
\(89 = 13 \cdot 7 - \sqrt{4 }\) | \(90 = ( 17 - \sqrt{4} ) \cdot 3 !\) | \(91 = 14 \cdot 3! + 7 \) | \(92 = 14 \cdot 7 - 3 !\) |
\(93 = ( 7 - 4 ) \cdot 31 \) | \(94 = ( 3 - 1 ) \cdot 47 \) | \(95 = 13 \cdot 7 + 4 \) | \(96 = ( 31 - 7 ) \cdot 4 \) |
\(97 = \sqrt{4}^{7} - 31 \) | \(98 = 3^{4} + 17 \) | \(99 = ( 3 + 7 )^{\sqrt{4}} - 1 \) | \(100 = 17 \cdot 3! - \sqrt{4 }\) |