1347

\(1 = 3 - \frac{ 14 }{ 7 }\) \(2 = \frac{ 34 }{ 17 }\) \(3 = 31 - 4 \cdot 7 \) \(4 = 41 - 37 \)
\(5 = \frac{ 13 + 7 }{ 4 }\) \(6 = \frac{ 14 \cdot 3 }{ 7 }\) \(7 = \sqrt{\frac{ 147 }{ 3 }}\) \(8 = ( \frac{ 14 }{ 7 } )^{3 }\)
\(9 = 3^{\frac{ 14 }{ 7 }}\) \(10 = 13 + 4 - 7 \) \(11 = 17 - 3 \cdot \sqrt{4 }\) \(12 = \sqrt{147 - 3 }\)
\(13 = \sqrt{173 - 4 }\) \(14 = ( 7 - 3! ) \cdot 14 \) \(15 = 4 \cdot 7 - 13 \) \(16 = 47 - 31 \)
\(17 = 34 - 17 \) \(18 = 14 - 3 + 7 \) \(19 = 13 \cdot \sqrt{4} - 7 \) \(20 = 31 - 4 - 7 \)
\(21 = \sqrt{147 \cdot 3 }\) \(22 = 13 + \sqrt{4} + 7 \) \(23 = 37 - 14 \) \(24 = ( 41 - 37 )!\)
\(25 = \frac{ 71 + 4 }{ 3 }\) \(26 = 43 - 17 \) \(27 = 34 \cdot 1 - 7 \) \(28 = 71 - 43 \)
\(29 = \frac{ 174 }{ 3 ! }\) \(30 = 13 + 4! - 7 \) \(31 = 41 - 3 - 7 \) \(32 = 73 - 41 \)
\(33 = 34 - 1^{7 }\) \(34 = 47 - 13 \) \(35 = 14 \cdot 3 - 7 \) \(36 = 37 - 1^{4 }\)
\(37 = 71 - 34 \) \(38 = 1^{4} + 37 \) \(39 = ( 7 - 4 ) \cdot 13 \) \(40 = 34 - 1 + 7 \)
\(41 = 4 \cdot 7 + 13 \) \(42 = 31 + 4 + 7 \) \(43 = 74 - 31 \) \(44 = 1^{7} + 43 \)
\(45 = 13 \cdot 4 - 7 \) \(46 = 47 - 1^{3 }\) \(47 = 17 \cdot 3 - 4 \) \(48 = 1^{3} + 47 \)
\(49 = \frac{ 147 }{ 3 }\) \(50 = 43 \cdot 1 + 7 \) \(51 = 14 + 37 \) \(52 = 47 - 1 + 3 !\)
\(53 = 17 \cdot 3 + \sqrt{4 }\) \(54 = 41 + 3! + 7 \) \(55 = 17 \cdot 3 + 4 \) \(56 = ( 7 - 3 ) \cdot 14 \)
\(57 = ( 17 + \sqrt{4} ) \cdot 3 \) \(58 = \frac{ 174 }{ 3 }\) \(59 = \frac{ 413 }{ 7 }\) \(60 = 13 + 47 \)
\(61 = 74 - 13 \) \(62 = 3 \cdot 7 + 41 \) \(63 = ( 13 - 4 ) \cdot 7 \) \(64 = 3^{4} - 17 \)
\(65 = 17 \cdot 4 - 3 \) \(66 = 71 - 3 - \sqrt{4 }\) \(67 = 13 \cdot 7 - 4 !\) \(68 = 73 - 1 - 4 \)
\(69 = 73 \cdot 1 - 4 \) \(70 = 71 + 3 - 4 \) \(71 = 17 \cdot 4 + 3 \) \(72 = 71 - 3 + 4 \)
\(73 = 1^{4} \cdot 73 \) \(74 = 1^{4} + 73 \) \(75 = 1^{3} + 74 \) \(76 = 73 - 1 + 4 \)
\(77 = ( 14 - 3 ) \cdot 7 \) \(78 = 31 + 47 \) \(79 = \sqrt{4}^{3} + 71 \) \(80 = ( 13 + 7 ) \cdot 4 \)
\(81 = 4^{3} + 17 \) \(82 = \sqrt{7 - 3} \cdot 41 \) \(83 = 3 \cdot 4 + 71 \) \(84 = 1 \cdot 3 \cdot 4 \cdot 7 \)
\(85 = ( 3 + \sqrt{4} ) \cdot 17 \) \(86 = \frac{ 7^{3} + 1 }{ 4 }\) \(87 = 13 + 74 \) \(88 = ( 1 \cdot 3 )^{4} + 7 \)
\(89 = 13 \cdot 7 - \sqrt{4 }\) \(90 = ( 17 - \sqrt{4} ) \cdot 3 !\) \(91 = 14 \cdot 3! + 7 \) \(92 = 14 \cdot 7 - 3 !\)
\(93 = ( 7 - 4 ) \cdot 31 \) \(94 = ( 3 - 1 ) \cdot 47 \) \(95 = 13 \cdot 7 + 4 \) \(96 = ( 31 - 7 ) \cdot 4 \)
\(97 = \sqrt{4}^{7} - 31 \) \(98 = 3^{4} + 17 \) \(99 = ( 3 + 7 )^{\sqrt{4}} - 1 \) \(100 = 17 \cdot 3! - \sqrt{4 }\)