\(1 = ( 8 - 7 )^{12 }\) | \(2 = \sqrt{\frac{ 72 }{ 18 }}\) | \(3 = \frac{ 81 }{ 27 }\) | \(4 = \frac{ 72 }{ 18 }\) |
\(5 = 8 - \frac{ 21 }{ 7 }\) | \(6 = ( \frac{ 81 }{ 27 } )!\) | \(7 = 17 - 2 - 8 \) | \(8 = \frac{ 72 }{ \sqrt{81 } }\) |
\(9 = 27 - 18 \) | \(10 = \frac{ 72 }{ 8 } + 1 \) | \(11 = 28 - 17 \) | \(12 = ( 8 - 7 ) \cdot 12 \) |
\(13 = 12 - 7 + 8 \) | \(14 = \sqrt{12 - 8} \cdot 7 \) | \(15 = \sqrt{217 + 8 }\) | \(16 = \frac{ 18 }{ 2 } + 7 \) |
\(17 = ( 12 - 8 )! - 7 \) | \(18 = 27 - \sqrt{81 }\) | \(19 = 27 \cdot 1 - 8 \) | \(20 = 21 + 7 - 8 \) |
\(21 = \frac{ 8 }{ 2 } + 17 \) | \(22 = ( 18 - 7 ) \cdot 2 \) | \(23 = 17 - 2 + 8 \) | \(24 = ( \frac{ 72 }{ 18 } )!\) |
\(25 = \sqrt{17^{2}} + 8 \) | \(26 = \frac{ 182 }{ 7 }\) | \(27 = \sqrt{721 + 8 }\) | \(28 = ( 12 - 8 ) \cdot 7 \) |
\(29 = 18 \cdot 2 - 7 \) | \(30 = 27 + \sqrt{\sqrt{81 }}\) | \(31 = 7^{2} - 18 \) | \(32 = 2 \cdot 7 + 18 \) |
\(33 = 2 \cdot 8 + 17 \) | \(34 = 27 - 1 + 8 \) | \(35 = 7 \cdot 8 - 21 \) | \(36 = \sqrt{18 \cdot 72 }\) |
\(37 = \frac{ 81 - 7 }{ 2 }\) | \(38 = \frac{ 78 }{ 2 } - 1 \) | \(39 = \frac{ 78 \cdot 1 }{ 2 }\) | \(40 = ( 12 - 7 ) \cdot 8 \) |
\(41 = ( \frac{ 8 }{ 2 } )! + 17 \) | \(42 = 17 \cdot 2 + 8 \) | \(43 = 71 - 28 \) | \(44 = 7 \cdot 8 - 12 \) |
\(45 = 17 + 28 \) | \(46 = ( 7 - 1 ) \cdot 8 - 2 \) | \(47 = 8^{2} - 17 \) | \(48 = \sqrt{2^{7} \cdot 18 }\) |
\(49 = 7^{\sqrt{12 - 8 }}\) | \(50 = ( 17 + 8 ) \cdot 2 \) | \(51 = ( 8 - 1 ) \cdot 7 + 2 \) | \(52 = 7^{2} + \sqrt{\sqrt{81 }}\) |
\(53 = 7 \cdot 8 - 1 - 2 \) | \(54 = 72 - 18 \) | \(55 = 71 - 2 \cdot 8 \) | \(56 = ( 2 - 1 ) \cdot 7 \cdot 8 \) |
\(57 = 78 - 21 \) | \(58 = 7^{2} + \sqrt{81 }\) | \(59 = 7 \cdot 8 + 1 + 2 \) | \(60 = ( 7 - 1 ) \cdot ( 2 + 8 )\) |
\(61 = 71 - 2 - 8 \) | \(62 = ( 1 + 7 ) \cdot 8 - 2 \) | \(63 = 72 - \sqrt{81 }\) | \(64 = 72 \cdot 1 - 8 \) |
\(65 = 82 - 17 \) | \(66 = 78 - 12 \) | \(67 = 7^{2} + 18 \) | \(68 = 7 \cdot 8 + 12 \) |
\(69 = 72 - \sqrt{\sqrt{81 }}\) | \(70 = \frac{ ( 8 - 1 )! }{ 72 }\) | \(71 = 72 - 1^{8 }\) | \(72 = 1^{8} \cdot 72 \) |
\(73 = 1^{8} + 72 \) | \(74 = 82 - 1 - 7 \) | \(75 = 87 - 12 \) | \(76 = 12 \cdot 7 - 8 \) |
\(77 = 7 \cdot 8 + 21 \) | \(78 = ( 2 - 1 ) \cdot 78 \) | \(79 = 72 - 1 + 8 \) | \(80 = 72 \cdot 1 + 8 \) |
\(81 = 72 + \sqrt{81 }\) | \(82 = 1^{7} \cdot 82 \) | \(83 = 1^{7} + 82 \) | \(84 = 87 - 1 - 2 \) |
\(85 = 87 \cdot 1 - 2 \) | \(86 = 81 - 2 + 7 \) | \(87 = 2 \cdot 8 + 71 \) | \(88 = 82 - 1 + 7 \) |
\(89 = \frac{ 178 }{ 2 }\) | \(90 = 12 + 78 \) | \(91 = ( 21 - 8 ) \cdot 7 \) | \(92 = 12 \cdot 7 + 8 \) |
\(93 = ( 1 + 2 )! + 87 \) | \(94 = ?\) | \(95 = 2 \cdot 7 + 81 \) | \(96 = ( 7 - 1 ) \cdot 2 \cdot 8 \) |
\(97 = \frac{ ( 1 + 2 )!! }{ 8 } + 7 \) | \(98 = ( 8 - 1 ) \cdot 2 \cdot 7 \) | \(99 = 12 + 87 \) | \(100 = ( \sqrt{\sqrt{81}} + 7 )^{2 }\) |