\(1 = 2 \cdot 7 - 13 \) | \(2 = \sqrt{31 - 27 }\) | \(3 = 7 - \frac{ 12 }{ 3 }\) | \(4 = 31 - 27 \) |
\(5 = \sqrt{37 - 12 }\) | \(6 = 23 - 17 \) | \(7 = \sqrt{12 + 37 }\) | \(8 = 12 + 3 - 7 \) |
\(9 = 3 \cdot 7 - 12 \) | \(10 = \frac{ 13 + 7 }{ 2 }\) | \(11 = \frac{ 12 }{ 3 } + 7 \) | \(12 = ( 13 - 7 ) \cdot 2 \) |
\(13 = \sqrt{172 - 3 }\) | \(14 = 27 - 13 \) | \(15 = 32 - 17 \) | \(16 = 37 - 21 \) |
\(17 = ( 3 - 2 ) \cdot 17 \) | \(18 = 13 - 2 + 7 \) | \(19 = 13 \cdot 2 - 7 \) | \(20 = \sqrt{13^{2}} + 7 \) |
\(21 = \sqrt{12 - 3} \cdot 7 \) | \(22 = 12 + 3 + 7 \) | \(23 = 2 \cdot 3 + 17 \) | \(24 = ( 31 - 27 )!\) |
\(25 = 37 - 12 \) | \(26 = 3^{2} + 17 \) | \(27 = \sqrt{731 - 2 }\) | \(28 = \frac{ 12 }{ 3 } \cdot 7 \) |
\(29 = 12 \cdot 3 - 7 \) | \(30 = 23 \cdot 1 + 7 \) | \(31 = 17 \cdot 2 - 3 \) | \(32 = 1^{7} \cdot 32 \) |
\(33 = \frac{ 231 }{ 7 }\) | \(34 = 37 - 1 - 2 \) | \(35 = 37 \cdot 1 - 2 \) | \(36 = ( 13 - 7 )^{2 }\) |
\(37 = 17 \cdot 2 + 3 \) | \(38 = 32 - 1 + 7 \) | \(39 = 71 - 32 \) | \(40 = 13 + 27 \) |
\(41 = 72 - 31 \) | \(42 = ( 21 - 7 ) \cdot 3 \) | \(43 = 12 \cdot 3 + 7 \) | \(44 = ( 3 \cdot 7 + 1 ) \cdot 2 \) |
\(45 = ( 17 - 2 ) \cdot 3 \) | \(46 = ( 17 + 3! ) \cdot 2 \) | \(47 = 2^{3!} - 17 \) | \(48 = 71 - 23 \) |
\(49 = 12 + 37 \) | \(50 = 1^{3} + 7^{2 }\) | \(51 = \sqrt{17^{2}} \cdot 3 \) | \(52 = 73 - 21 \) |
\(53 = 17 \cdot 3 + 2 \) | \(54 = ( 3 - 1 ) \cdot 27 \) | \(55 = 31 \cdot 2 - 7 \) | \(56 = 21 \cdot 3 - 7 \) |
\(57 = ( 12 + 7 ) \cdot 3 \) | \(58 = 21 + 37 \) | \(59 = 72 - 13 \) | \(60 = ( 1 + 2 + 7 ) \cdot 3 !\) |
\(61 = \sqrt{3721 }\) | \(62 = 7^{2} + 13 \) | \(63 = ( 12 - 3 ) \cdot 7 \) | \(64 = 2^{13 - 7 }\) |
\(65 = ( 7 - 2 ) \cdot 13 \) | \(66 = 71 - 2 - 3 \) | \(67 = 71 + 2 - 3 !\) | \(68 = 72 - 1 - 3 \) |
\(69 = 31 \cdot 2 + 7 \) | \(70 = 21 \cdot 3 + 7 \) | \(71 = ( 3 - 2 ) \cdot 71 \) | \(72 = ( 37 - 1 ) \cdot 2 \) |
\(73 = 37 \cdot 2 - 1 \) | \(74 = 37 \cdot 1 \cdot 2 \) | \(75 = 37 \cdot 2 + 1 \) | \(76 = ( 31 + 7 ) \cdot 2 \) |
\(77 = ( 13 - 2 ) \cdot 7 \) | \(78 = ( 27 - 1 ) \cdot 3 \) | \(79 = 2^{3} + 71 \) | \(80 = 27 \cdot 3 - 1 \) |
\(81 = 12 \cdot 7 - 3 \) | \(82 = 27 \cdot 3 + 1 \) | \(83 = 2 \cdot 3! + 71 \) | \(84 = ( 21 + 7 ) \cdot 3 \) |
\(85 = 12 + 73 \) | \(86 = ( 3! \cdot 7 + 1 ) \cdot 2 \) | \(87 = 12 \cdot 7 + 3 \) | \(88 = \frac{ 3!! }{ 1 + 7 } - 2 \) |
\(89 = 13 \cdot 7 - 2 \) | \(90 = 12 \cdot 7 + 3 !\) | \(91 = \sqrt{13^{2}} \cdot 7 \) | \(92 = \frac{ 3!! }{ 1 + 7 } + 2 \) |
\(93 = 13 \cdot 7 + 2 \) | \(94 = 21 + 73 \) | \(95 = ( 3! - 2 )! + 71 \) | \(96 = ( 1 + 3 )! + 72 \) |
\(97 = 2^{7} - 31 \) | \(98 = 7^{3 - 1} \cdot 2 \) | \(99 = ( 3 + 7 )^{2} - 1 \) | \(100 = 17 \cdot 3! - 2 \) |