\(1 = 1^{\sqrt{324 }}\) | \(2 = 3 - 1^{24 }\) | \(3 = \sqrt{23 - 14 }\) | \(4 = \frac{ 14 }{ 2 } - 3 \) |
\(5 = 12 - 3 - 4 \) | \(6 = \frac{ 12 }{ 4 } + 3 \) | \(7 = 31 - 24 \) | \(8 = \sqrt{21 + 43 }\) |
\(9 = 23 - 14 \) | \(10 = \frac{ 14 }{ 2 } + 3 \) | \(11 = 24 - 13 \) | \(12 = ( 4 - 3 ) \cdot 12 \) |
\(13 = 34 - 21 \) | \(14 = ( 3 - 2 ) \cdot 14 \) | \(15 = 13 - 2 + 4 \) | \(16 = \frac{ 12 }{ 3 } \cdot 4 \) |
\(17 = \sqrt{324} - 1 \) | \(18 = 32 - 14 \) | \(19 = \sqrt{324} + 1 \) | \(20 = 2 \cdot 3 + 14 \) |
\(21 = 2 \cdot 4 + 13 \) | \(22 = 34 - 12 \) | \(23 = 3^{2} + 14 \) | \(24 = ( 12 - 4 ) \cdot 3 \) |
\(25 = 14 \cdot 2 - 3 \) | \(26 = \frac{ 13 \cdot 4 }{ 2 }\) | \(27 = ( \frac{ 12 }{ 4 } )^{3 }\) | \(28 = \frac{ 21 }{ 3 } \cdot 4 \) |
\(29 = 42 - 13 \) | \(30 = 13 \cdot 2 + 4 \) | \(31 = 43 - 12 \) | \(32 = 12 \cdot 3 - 4 \) |
\(33 = \frac{ 132 }{ 4 }\) | \(34 = ( 13 + 4 ) \cdot 2 \) | \(35 = 32 - 1 + 4 \) | \(36 = ( 12 - 3 ) \cdot 4 \) |
\(37 = 13 + 24 \) | \(38 = 42 - 1 - 3 \) | \(39 = 2 \cdot 4 + 31 \) | \(40 = 12 \cdot 3 + 4 \) |
\(41 = ( 3 - 2 ) \cdot 41 \) | \(42 = 41 - 2 + 3 \) | \(43 = 4^{3} - 21 \) | \(44 = ( 13 - 2 ) \cdot 4 \) |
\(45 = 12 \cdot 4 - 3 \) | \(46 = 12 + 34 \) | \(47 = 2^{4} + 31 \) | \(48 = ( 12 + 4 ) \cdot 3 \) |
\(49 = 2^{3} + 41 \) | \(50 = 13 \cdot 4 - 2 \) | \(51 = 12 \cdot 4 + 3 \) | \(52 = 4^{3} - 12 \) |
\(53 = 31 - 2 + 4 !\) | \(54 = 13 \cdot 4 + 2 \) | \(55 = 12 + 43 \) | \(56 = ( 3! - 2 ) \cdot 14 \) |
\(57 = ( 21 - \sqrt{4} ) \cdot 3 \) | \(58 = 31 \cdot 2 - 4 \) | \(59 = 21 \cdot 3 - 4 \) | \(60 = ( 12 + 3 ) \cdot 4 \) |
\(61 = 2 \cdot 4! + 13 \) | \(62 = \frac{ 31 \cdot 4 }{ 2 }\) | \(63 = 32 \cdot \sqrt{4} - 1 \) | \(64 = 21 + 43 \) |
\(65 = 21 \cdot 3 + \sqrt{4 }\) | \(66 = \frac{ 132 }{ \sqrt{4 } }\) | \(67 = \frac{ 134 }{ 2 }\) | \(68 = 34 \cdot 1 \cdot 2 \) |
\(69 = 3^{4} - 12 \) | \(70 = ( 2 + 3 ) \cdot 14 \) | \(71 = 24 \cdot 3 - 1 \) | \(72 = ( 21 - 3 ) \cdot 4 \) |
\(73 = 31 + 42 \) | \(74 = ( 13 + 4! ) \cdot 2 \) | \(75 = ( 21 + 4 ) \cdot 3 \) | \(76 = 4^{3} + 12 \) |
\(77 = 3!^{2} + 41 \) | \(78 = \frac{ 312 }{ 4 }\) | \(79 = 41 \cdot 2 - 3 \) | \(80 = 3^{4} + 1 - 2 \) |
\(81 = ( 13 - 4 )^{2 }\) | \(82 = 14 \cdot 3! - 2 \) | \(83 = ( 1 \cdot 3 )^{4} + 2 \) | \(84 = ( 3 + 4 ) \cdot 12 \) |
\(85 = 4^{3} + 21 \) | \(86 = 43 \cdot 1 \cdot 2 \) | \(87 = 21 \cdot 4 + 3 \) | \(88 = ( 23 - 1 ) \cdot 4 \) |
\(89 = 2^{3!} + 1 + 4 !\) | \(90 = 21 \cdot 4 + 3 !\) | \(91 = 23 \cdot 4 - 1 \) | \(92 = 23 \cdot 1 \cdot 4 \) |
\(93 = 3^{4} + 12 \) | \(94 = ( 41 + 3! ) \cdot 2 \) | \(95 = 2^{4} \cdot 3! - 1 \) | \(96 = ( 21 + 3 ) \cdot 4 \) |
\(97 = ( 1 + 4 )! - 23 \) | \(98 = ( 1 + 3 ) \cdot 4! + 2 \) | \(99 = 123 - 4 !\) | \(100 = ( 3^{2} + 1 )^{\sqrt{4 }}\) |