\(1 = 12 - 2 - 9 \) | \(2 = 1^{29} \cdot 2 \) | \(3 = 22 - 19 \) | \(4 = \sqrt{\frac{ 12^{2} }{ 9 }}\) |
\(5 = 12 + 2 - 9 \) | \(6 = ( 22 - 19 )!\) | \(7 = 12 - 2 - \sqrt{9 }\) | \(8 = 29 - 21 \) |
\(9 = ( 12 - 9 )^{2 }\) | \(10 = 21 - 2 - 9 \) | \(11 = 12 + 2 - \sqrt{9 }\) | \(12 = 22 - 1 - 9 \) |
\(13 = 22 \cdot 1 - 9 \) | \(14 = 21 + 2 - 9 \) | \(15 = \frac{ 12 }{ 2 } + 9 \) | \(16 = \frac{ 12^{2} }{ 9 }\) |
\(17 = 29 - 12 \) | \(18 = 19 - \frac{ 2 }{ 2 }\) | \(19 = 12 - 2 + 9 \) | \(20 = \frac{ 2 }{ 2 } + 19 \) |
\(21 = 22 - 1^{9 }\) | \(22 = 1^{9} \cdot 22 \) | \(23 = 12 + 2 + 9 \) | \(24 = ( 21 - 9 ) \cdot 2 \) |
\(25 = 22 \cdot 1 + \sqrt{9 }\) | \(26 = 29 - 1 - 2 \) | \(27 = 29 \cdot 1 - 2 \) | \(28 = 21 - 2 + 9 \) |
\(29 = ( 2 - 1 ) \cdot 29 \) | \(30 = 2 \cdot 9 + 12 \) | \(31 = 22 \cdot 1 + 9 \) | \(32 = 21 + 2 + 9 \) |
\(33 = 12 \cdot 2 + 9 \) | \(34 = ( 19 - 2 ) \cdot 2 \) | \(35 = ( 1 + 2 )! + 29 \) | \(36 = 19 \cdot 2 - 2 \) |
\(37 = ( 2 + 2 ) \cdot 9 + 1 \) | \(38 = 12 \cdot \sqrt{9} + 2 \) | \(39 = 2 \cdot 9 + 21 \) | \(40 = 19 \cdot 2 + 2 \) |
\(41 = 12 + 29 \) | \(42 = ( 12 + 9 ) \cdot 2 \) | \(43 = ( 2 + 2 )! + 19 \) | \(44 = ( \sqrt{9} - 1 ) \cdot 22 \) |
\(45 = \frac{ 92 }{ 2 } - 1 \) | \(46 = \frac{ 92 \cdot 1 }{ 2 }\) | \(47 = \frac{ 92 }{ 2 } + 1 \) | \(48 = \frac{ 12^{2} }{ \sqrt{9 } }\) |
\(49 = \frac{ 21^{2} }{ 9 }\) | \(50 = 21 + 29 \) | \(51 = 21 \cdot 2 + 9 \) | \(52 = 2^{\sqrt{9}!} - 12 \) |
\(53 = ?\) | \(54 = \frac{ 12 }{ 2 } \cdot 9 \) | \(55 = \sqrt{2^{12}} - 9 \) | \(56 = ( 29 - 1 ) \cdot 2 \) |
\(57 = 29 \cdot 2 - 1 \) | \(58 = 29 \cdot 1 \cdot 2 \) | \(59 = 29 \cdot 2 + 1 \) | \(60 = ( 21 + 9 ) \cdot 2 \) |
\(61 = 21 \cdot \sqrt{9} - 2 \) | \(62 = ( 9 - 1 )^{2} - 2 \) | \(63 = \sqrt{21^{2} \cdot 9 }\) | \(64 = 2^{( 12 - 9 )!}\) |
\(65 = 21 \cdot \sqrt{9} + 2 \) | \(66 = 22 \cdot 1 \cdot \sqrt{9 }\) | \(67 = 22 \cdot \sqrt{9} + 1 \) | \(68 = ?\) |
\(69 = 91 - 22 \) | \(70 = 12 \cdot \sqrt{9}! - 2 \) | \(71 = 92 - 21 \) | \(72 = 12 \cdot 2 \cdot \sqrt{9 }\) |
\(73 = \sqrt{2^{12}} + 9 \) | \(74 = 12 \cdot \sqrt{9}! + 2 \) | \(75 = 9^{2} - ( 1 + 2 )!\) | \(76 = 19 \cdot 2 \cdot 2 \) |
\(77 = ?\) | \(78 = 9^{2} - 1 - 2 \) | \(79 = 9^{1 \cdot 2} - 2 \) | \(80 = 92 - 12 \) |
\(81 = ( 12 - \sqrt{9} )^{2 }\) | \(82 = 9^{2} - 1 + 2 \) | \(83 = 9^{1 \cdot 2} + 2 \) | \(84 = ( 9 - 2 ) \cdot 12 \) |
\(85 = 2^{\sqrt{9}!} + 21 \) | \(86 = 92 - ( 1 + 2 )!\) | \(87 = ( 1 + 2 ) \cdot 29 \) | \(88 = ( 1 + \sqrt{9} ) \cdot 22 \) |
\(89 = 92 - 1 - 2 \) | \(90 = ( 12 - 2 ) \cdot 9 \) | \(91 = 91 - 2 + 2 \) | \(92 = \frac{ 2 }{ 2 } + 91 \) |
\(93 = 9^{2} + 12 \) | \(94 = 92 \cdot 1 + 2 \) | \(95 = 91 + 2 + 2 \) | \(96 = \frac{ 192 }{ 2 }\) |
\(97 = ?\) | \(98 = ( 1 + 2 )! + 92 \) | \(99 = ( 2 + \sqrt{9} )! - 21 \) | \(100 = ( 2 - 1 + 9 )^{2 }\) |