\(1 = 18^{2 - 2 }\) | \(2 = \sqrt{22 - 18 }\) | \(3 = \frac{ 12 \cdot 2 }{ 8 }\) | \(4 = 22 - 18 \) |
\(5 = 21 - 2 \cdot 8 \) | \(6 = 12 + 2 - 8 \) | \(7 = 28 - 21 \) | \(8 = \sqrt{\frac{ 128 }{ 2 }}\) |
\(9 = 1^{22} + 8 \) | \(10 = \frac{ 12 + 8 }{ 2 }\) | \(11 = \frac{ 18 }{ 2 } + 2 \) | \(12 = \frac{ ( 12 - 8 )! }{ 2 }\) |
\(13 = 22 - \sqrt{81 }\) | \(14 = \frac{ 12 }{ 2 } + 8 \) | \(15 = 21 + 2 - 8 \) | \(16 = 28 - 12 \) |
\(17 = 18 - \frac{ 2 }{ 2 }\) | \(18 = 12 - 2 + 8 \) | \(19 = \frac{ 2 }{ 2 } + 18 \) | \(20 = \sqrt{12^{2}} + 8 \) |
\(21 = 22 - 1^{8 }\) | \(22 = 12 + 2 + 8 \) | \(23 = 1^{8} + 22 \) | \(24 = ( 22 - 18 )!\) |
\(25 = \frac{ 8 }{ 2 } + 21 \) | \(26 = ( 21 - 8 ) \cdot 2 \) | \(27 = 21 - 2 + 8 \) | \(28 = 2 \cdot 8 + 12 \) |
\(29 = 22 - 1 + 8 \) | \(30 = 22 \cdot 1 + 8 \) | \(31 = 22 + \sqrt{81 }\) | \(32 = 12 \cdot 2 + 8 \) |
\(33 = ( 2 + 2 ) \cdot 8 + 1 \) | \(34 = 18 \cdot 2 - 2 \) | \(35 = ( 8 - 2 )^{2} - 1 \) | \(36 = ( \frac{ 8 }{ 2 } )! + 12 \) |
\(37 = 2 \cdot 8 + 21 \) | \(38 = 18 \cdot 2 + 2 \) | \(39 = ?\) | \(40 = 12 + 28 \) |
\(41 = \frac{ 82 \cdot 1 }{ 2 }\) | \(42 = \frac{ 82 }{ 2 } + 1 \) | \(43 = 8^{2} - 21 \) | \(44 = ( 1 + 2 )!^{2} + 8 \) |
\(45 = ( \frac{ 8 }{ 2 } )! + 21 \) | \(46 = ( ( \frac{ 8 }{ 2 } )! - 1 ) \cdot 2 \) | \(47 = ( 8 - 1 )^{2} - 2 \) | \(48 = \frac{ 12 }{ 2 } \cdot 8 \) |
\(49 = 21 + 28 \) | \(50 = 21 \cdot 2 + 8 \) | \(51 = ( 8 - 1 )^{2} + 2 \) | \(52 = 8^{2} - 12 \) |
\(53 = ?\) | \(54 = ( 28 - 1 ) \cdot 2 \) | \(55 = 28 \cdot 2 - 1 \) | \(56 = 28 \cdot 1 \cdot 2 \) |
\(57 = 28 \cdot 2 + 1 \) | \(58 = ( 21 + 8 ) \cdot 2 \) | \(59 = 81 - 22 \) | \(60 = \frac{ ( 8 - 2 )! }{ 12 }\) |
\(61 = 82 - 21 \) | \(62 = 8^{1 \cdot 2} - 2 \) | \(63 = 8^{2} + 1 - 2 \) | \(64 = \frac{ 128 }{ 2 }\) |
\(65 = 8^{2} - 1 + 2 \) | \(66 = 22 \cdot \sqrt{\sqrt{81 }}\) | \(67 = 8^{2} + 1 + 2 \) | \(68 = ?\) |
\(69 = ?\) | \(70 = 82 - 12 \) | \(71 = \sqrt{( 8 - \frac{ 2 }{ 2 } )! + 1 }\) | \(72 = ( 8 - 2 ) \cdot 12 \) |
\(73 = ?\) | \(74 = ?\) | \(75 = ?\) | \(76 = 8^{2} + 12 \) |
\(77 = 81 - 2 - 2 \) | \(78 = ?\) | \(79 = 82 - 1 - 2 \) | \(80 = ( 12 - 2 ) \cdot 8 \) |
\(81 = ( \frac{ 18 }{ 2 } )^{2 }\) | \(82 = \frac{ 2 }{ 2 } + 81 \) | \(83 = 82 - 1 + 2 \) | \(84 = \frac{ 21 \cdot 8 }{ 2 }\) |
\(85 = 8^{2} + 21 \) | \(86 = ?\) | \(87 = ?\) | \(88 = ( 1 + 2 )! + 82 \) |
\(89 = ?\) | \(90 = \frac{ ( \frac{ 12 }{ 2 } )! }{ 8 }\) | \(91 = \frac{ 182 }{ 2 }\) | \(92 = \frac{ ( 1 + 2 )!! }{ 8 } + 2 \) |
\(93 = ?\) | \(94 = 12 + 82 \) | \(95 = ?\) | \(96 = \sqrt{12^{2}} \cdot 8 \) |
\(97 = ?\) | \(98 = 12 \cdot 8 + 2 \) | \(99 = ( 2 + 8 )^{2} - 1 \) | \(100 = ( 1 \cdot 2 + 8 )^{2 }\) |