\(1 = 7 - \frac{ 12 }{ 2 }\) | \(2 = \frac{ 12 + 2 }{ 7 }\) | \(3 = 12 - 2 - 7 \) | \(4 = \frac{ 12 }{ \sqrt{2 + 7 } }\) |
\(5 = 22 - 17 \) | \(6 = \frac{ 72 }{ 12 }\) | \(7 = \sqrt{71 - 22 }\) | \(8 = 2^{\frac{ 21 }{ 7 }}\) |
\(9 = ( \frac{ 21 }{ 7 } )^{2 }\) | \(10 = ( 12 - 7 ) \cdot 2 \) | \(11 = \sqrt{72 \cdot 2} - 1 \) | \(12 = 21 - 2 - 7 \) |
\(13 = \frac{ 12 }{ 2 } + 7 \) | \(14 = \frac{ 21 + 7 }{ 2 }\) | \(15 = 27 - 12 \) | \(16 = 17 - \frac{ 2 }{ 2 }\) |
\(17 = 12 - 2 + 7 \) | \(18 = \sqrt{12 \cdot 27 }\) | \(19 = \sqrt{12^{2}} + 7 \) | \(20 = ( 1 + 2 + 7 ) \cdot 2 \) |
\(21 = 12 + 2 + 7 \) | \(22 = 1^{7} \cdot 22 \) | \(23 = 1^{7} + 22 \) | \(24 = 27 - 1 - 2 \) |
\(25 = ( 12 - 7 )^{2 }\) | \(26 = 2 \cdot 7 + 12 \) | \(27 = ( 2 - 1 ) \cdot 27 \) | \(28 = ( 21 - 7 ) \cdot 2 \) |
\(29 = 22 \cdot 1 + 7 \) | \(30 = ( 17 - 2 ) \cdot 2 \) | \(31 = 12 \cdot 2 + 7 \) | \(32 = 2^{12 - 7 }\) |
\(33 = ( 1 + 2 )! + 27 \) | \(34 = \sqrt{17^{2}} \cdot 2 \) | \(35 = 21 \cdot 2 - 7 \) | \(36 = 17 \cdot 2 + 2 \) |
\(37 = 7^{2} - 12 \) | \(38 = ( 12 + 7 ) \cdot 2 \) | \(39 = 12 + 27 \) | \(40 = ( 1 + 2 )! \cdot 7 - 2 \) |
\(41 = ( 2 + 2 )! + 17 \) | \(42 = \frac{ 12 }{ 2 } \cdot 7 \) | \(43 = ( 1 + 2 )!^{2} + 7 \) | \(44 = ( 1 + 2 )! \cdot 7 + 2 \) |
\(45 = ?\) | \(46 = 7^{2} - 1 - 2 \) | \(47 = 71 - ( 2 + 2 )!\) | \(48 = 21 + 27 \) |
\(49 = 71 - 22 \) | \(50 = 7^{2} - 1 + 2 \) | \(51 = 72 - 21 \) | \(52 = ( 27 - 1 ) \cdot 2 \) |
\(53 = 27 \cdot 2 - 1 \) | \(54 = 27 \cdot 1 \cdot 2 \) | \(55 = 27 \cdot 2 + 1 \) | \(56 = ( 21 + 7 ) \cdot 2 \) |
\(57 = \sqrt{2^{12}} - 7 \) | \(58 = ?\) | \(59 = \frac{ ( 7 - 2 )! }{ 2 } - 1 \) | \(60 = 72 - 12 \) |
\(61 = 7^{2} + 12 \) | \(62 = 2^{7 - 1} - 2 \) | \(63 = \frac{ 21^{2} }{ 7 }\) | \(64 = 2^{( \frac{ 21 }{ 7 } )!}\) |
\(65 = \frac{ 2^{7} }{ 2 } + 1 \) | \(66 = 72 - ( 1 + 2 )!\) | \(67 = 71 - 2 - 2 \) | \(68 = 17 \cdot 2 \cdot 2 \) |
\(69 = 72 - 1 - 2 \) | \(70 = ( 12 - 2 ) \cdot 7 \) | \(71 = 71 - 2 + 2 \) | \(72 = \frac{ 2 }{ 2 } + 71 \) |
\(73 = 72 - 1 + 2 \) | \(74 = 72 \cdot 1 + 2 \) | \(75 = 71 + 2 + 2 \) | \(76 = ?\) |
\(77 = ?\) | \(78 = ( 1 + 2 )! + 72 \) | \(79 = ?\) | \(80 = ( 2 + 7 )^{2} - 1 \) |
\(81 = ( 1 + 2 ) \cdot 27 \) | \(82 = 12 \cdot 7 - 2 \) | \(83 = ?\) | \(84 = 12 + 72 \) |
\(85 = ?\) | \(86 = \frac{ 172 }{ 2 }\) | \(87 = ?\) | \(88 = ?\) |
\(89 = ?\) | \(90 = ?\) | \(91 = ?\) | \(92 = ?\) |
\(93 = 21 + 72 \) | \(94 = ?\) | \(95 = ( 2 + 2 )! + 71 \) | \(96 = ( 7^{2} - 1 ) \cdot 2 \) |
\(97 = 7^{2} \cdot 2 - 1 \) | \(98 = ( 12 + 2 ) \cdot 7 \) | \(99 = ( 7 - 2 )! - 21 \) | \(100 = ( 1 + 2 + 7 )^{2 }\) |