\(1 = \frac{ \frac{ 12 }{ 2 } }{ 6 }\) | \(2 = 1^{26} \cdot 2 \) | \(3 = \frac{ 12 - 6 }{ 2 }\) | \(4 = 12 - 2 - 6 \) |
\(5 = 26 - 21 \) | \(6 = 22 - 16 \) | \(7 = \frac{ 16 - 2 }{ 2 }\) | \(8 = 12 + 2 - 6 \) |
\(9 = \sqrt{\frac{ 162 }{ 2 }}\) | \(10 = \frac{ 16 }{ 2 } + 2 \) | \(11 = \frac{ 22 }{ \sqrt{\sqrt{16 }} }\) | \(12 = \frac{ 12 }{ 2 } + 6 \) |
\(13 = 21 - 2 - 6 \) | \(14 = 26 - 12 \) | \(15 = \sqrt{226 - 1 }\) | \(16 = 12 - 2 + 6 \) |
\(17 = \frac{ 2 }{ 2 } + 16 \) | \(18 = \sqrt{162 \cdot 2 }\) | \(19 = 21 - \sqrt{6 - 2 }\) | \(20 = 12 + 2 + 6 \) |
\(21 = 22 - 1^{6 }\) | \(22 = 1^{6} \cdot 22 \) | \(23 = 1^{6} + 22 \) | \(24 = \frac{ 12^{2} }{ 6 }\) |
\(25 = 21 - 2 + 6 \) | \(26 = \sqrt{16} + 22 \) | \(27 = 22 - 1 + 6 \) | \(28 = ( 16 - 2 ) \cdot 2 \) |
\(29 = 21 + 2 + 6 \) | \(30 = 12 \cdot 2 + 6 \) | \(31 = \frac{ 62 \cdot 1 }{ 2 }\) | \(32 = \frac{ 62 }{ 2 } + 1 \) |
\(33 = 2 \cdot 6 + 21 \) | \(34 = 16 \cdot 2 + 2 \) | \(35 = 6^{2} + 1 - 2 \) | \(36 = \frac{ 12 }{ 2 } \cdot 6 \) |
\(37 = 61 - ( 2 + 2 )!\) | \(38 = 12 + 26 \) | \(39 = 61 - 22 \) | \(40 = ( 2 + 2 )! + 16 \) |
\(41 = 62 - 21 \) | \(42 = \sqrt{6 - 2} \cdot 21 \) | \(43 = 2^{6} - 21 \) | \(44 = \sqrt{\sqrt{16}} \cdot 22 \) |
\(45 = ( 6 - 2 )! + 21 \) | \(46 = \sqrt{16}! + 22 \) | \(47 = 21 + 26 \) | \(48 = ( 6 - 2 ) \cdot 12 \) |
\(49 = ( 2 - 1 + 6 )^{2 }\) | \(50 = 62 - 12 \) | \(51 = 26 \cdot 2 - 1 \) | \(52 = 2^{6} - 12 \) |
\(53 = 26 \cdot 2 + 1 \) | \(54 = ( 21 + 6 ) \cdot 2 \) | \(55 = ?\) | \(56 = 62 - ( 1 + 2 )!\) |
\(57 = 6^{2} + 21 \) | \(58 = \sqrt{2^{12}} - 6 \) | \(59 = 62 - 1 - 2 \) | \(60 = ( 12 - 2 ) \cdot 6 \) |
\(61 = 61 - 2 + 2 \) | \(62 = \frac{ 2 }{ 2 } + 61 \) | \(63 = \frac{ 126 }{ 2 }\) | \(64 = 2^{12 - 6 }\) |
\(65 = 61 + 2 + 2 \) | \(66 = ( 1 \cdot 2 )^{6} + 2 \) | \(67 = 2^{6} + 1 + 2 \) | \(68 = ( 1 + 2 )! + 62 \) |
\(69 = ?\) | \(70 = 12 \cdot 6 - 2 \) | \(71 = 6^{2} \cdot 2 - 1 \) | \(72 = \frac{ 6! }{ 12 - 2 }\) |
\(73 = 6^{2} \cdot 2 + 1 \) | \(74 = 12 + 62 \) | \(75 = ?\) | \(76 = 2^{6} + 12 \) |
\(77 = ?\) | \(78 = ( 1 + 2 ) \cdot 26 \) | \(79 = ?\) | \(80 = \frac{ 6! }{ ( 1 + 2 )^{2 } }\) |
\(81 = \frac{ 162 }{ 2 }\) | \(82 = ?\) | \(83 = 21 + 62 \) | \(84 = ( 12 + 2 ) \cdot 6 \) |
\(85 = 2^{6} + 21 \) | \(86 = ?\) | \(87 = ?\) | \(88 = \sqrt{16} \cdot 22 \) |
\(89 = ?\) | \(90 = \frac{ 6! }{ 2^{1 + 2 } }\) | \(91 = ?\) | \(92 = ?\) |
\(93 = ?\) | \(94 = ?\) | \(95 = ?\) | \(96 = ( 2 + 6 ) \cdot 12 \) |
\(97 = ?\) | \(98 = ( 6 - 1 )! - 22 \) | \(99 = ?\) | \(100 = ( ( 6 - 1 ) \cdot 2 )^{2 }\) |