\(1 = 1^{\sqrt{225 }}\) | \(2 = 122 - 5 !\) | \(3 = \frac{ 21 }{ 2 + 5 }\) | \(4 = 25 - 21 \) |
\(5 = 12 - 2 - 5 \) | \(6 = 1^{22} + 5 \) | \(7 = 22 - 15 \) | \(8 = \sqrt{12 + 52 }\) |
\(9 = 12 + 2 - 5 \) | \(10 = \frac{ \sqrt{25}! }{ 12 }\) | \(11 = \frac{ 12 }{ 2 } + 5 \) | \(12 = \frac{ 25 - 1 }{ 2 }\) |
\(13 = 25 - 12 \) | \(14 = \sqrt{225} - 1 \) | \(15 = \sqrt{225} \cdot 1 \) | \(16 = \sqrt{225} + 1 \) |
\(17 = 12 + \sqrt{25 }\) | \(18 = 21 + 2 - 5 \) | \(19 = 12 + 2 + 5 \) | \(20 = 2^{5} - 12 \) |
\(21 = 22 - 1^{5 }\) | \(22 = 2 \cdot 5 + 12 \) | \(23 = 1^{5} + 22 \) | \(24 = ( 25 - 21 )!\) |
\(25 = ( 2 - 1 ) \cdot 25 \) | \(26 = 21 + \sqrt{25 }\) | \(27 = 22 \cdot 1 + 5 \) | \(28 = 15 \cdot 2 - 2 \) |
\(29 = 51 - 22 \) | \(30 = \frac{ 12 }{ 2 } \cdot 5 \) | \(31 = 52 - 21 \) | \(32 = \sqrt{512 \cdot 2 }\) |
\(33 = 2^{\sqrt{25}} + 1 \) | \(34 = ( 12 + 5 ) \cdot 2 \) | \(35 = \sqrt{1225 }\) | \(36 = ( 5 - 2 ) \cdot 12 \) |
\(37 = 12 + 25 \) | \(38 = ( 1 + 5 )^{2} + 2 \) | \(39 = ( 2 + 2 )! + 15 \) | \(40 = 52 - 12 \) |
\(41 = ( 1 + 2 )!^{2} + 5 \) | \(42 = \frac{ 5! }{ 1 + 2 } + 2 \) | \(43 = ?\) | \(44 = 2^{5} + 12 \) |
\(45 = ( 1 + 2 )^{2} \cdot 5 \) | \(46 = 21 + 25 \) | \(47 = 21 \cdot 2 + 5 \) | \(48 = ( 25 - 1 ) \cdot 2 \) |
\(49 = ( 12 - 5 )^{2 }\) | \(50 = ( 12 - 2 ) \cdot 5 \) | \(51 = 25 \cdot 2 + 1 \) | \(52 = ( 21 + 5 ) \cdot 2 \) |
\(53 = 2^{5} + 21 \) | \(54 = 52 \cdot 1 + 2 \) | \(55 = 51 + 2 + 2 \) | \(56 = 5! - \sqrt{2^{12 }}\) |
\(57 = \frac{ 5! }{ 2 } - 1 - 2 \) | \(58 = 12 \cdot 5 - 2 \) | \(59 = \sqrt{2^{12}} - 5 \) | \(60 = 12 \cdot \sqrt{25 }\) |
\(61 = \frac{ \sqrt{25}! }{ 2 } + 1 \) | \(62 = 12 \cdot 5 + 2 \) | \(63 = ( 5 - 2 ) \cdot 21 \) | \(64 = 12 + 52 \) |
\(65 = 2^{5} \cdot 2 + 1 \) | \(66 = \frac{ 12 + 5! }{ 2 }\) | \(67 = ?\) | \(68 = ?\) |
\(69 = \sqrt{2^{12}} + 5 \) | \(70 = ( 12 + 2 ) \cdot 5 \) | \(71 = \sqrt{( \sqrt{25} + 2 )! + 1 }\) | \(72 = ( 5 - 2 )! \cdot 12 \) |
\(73 = 21 + 52 \) | \(74 = ?\) | \(75 = ( 1 + 2 ) \cdot 25 \) | \(76 = \frac{ 152 }{ 2 }\) |
\(77 = ?\) | \(78 = 5! - 21 \cdot 2 \) | \(79 = ?\) | \(80 = \frac{ 5! }{ 1 + 2 } \cdot 2 \) |
\(81 = \frac{ 5! }{ 2 } + 21 \) | \(82 = ?\) | \(83 = ?\) | \(84 = ( 2 + 5 ) \cdot 12 \) |
\(85 = ?\) | \(86 = ?\) | \(87 = ?\) | \(88 = ( 5 - 1 ) \cdot 22 \) |
\(89 = ?\) | \(90 = ?\) | \(91 = ?\) | \(92 = 212 - 5 !\) |
\(93 = ?\) | \(94 = ?\) | \(95 = ( 21 - 2 ) \cdot 5 \) | \(96 = 5! - 12 \cdot 2 \) |
\(97 = 5! - ( 21 + 2 )\) | \(98 = ( 51 - 2 ) \cdot 2 \) | \(99 = \sqrt{25}! - 21 \) | \(100 = 51 \cdot 2 - 2 \) |