\(1 = ( 1^{17} )^{9 }\) | \(2 = 19 - 17 \) | \(3 = \sqrt{11 + 7 - 9 }\) | \(4 = 1^{17} + \sqrt{9 }\) |
\(5 = 9 - ( 11 - 7 )\) | \(6 = \sqrt{17 + 19 }\) | \(7 = 17 - 1 - 9 \) | \(8 = 9 - 1^{17 }\) |
\(9 = 11 + 7 - 9 \) | \(10 = 1^{17} + 9 \) | \(11 = 19 - 1 - 7 \) | \(12 = 19 \cdot 1 - 7 \) |
\(13 = \frac{ 117 }{ 9 }\) | \(14 = \sqrt{197 - 1 }\) | \(15 = ( 11 - 7 )! - 9 \) | \(16 = 17 - 1^{9 }\) |
\(17 = \frac{ 119 }{ 7 }\) | \(18 = 1^{9} + 17 \) | \(19 = \frac{ 171 }{ 9 }\) | \(20 = 91 - 71 \) |
\(21 = 11 + 7 + \sqrt{9 }\) | \(22 = ( 9 - 7 ) \cdot 11 \) | \(23 = ( 1 + 1 ) \cdot 7 + 9 \) | \(24 = \frac{ 71 + 1 }{ \sqrt{9 } }\) |
\(25 = 17 - 1 + 9 \) | \(26 = 17 \cdot 1 + 9 \) | \(27 = 11 + 7 + 9 \) | \(28 = ( 1 \cdot 1 + \sqrt{9} ) \cdot 7 \) |
\(29 = ( 1 + \sqrt{9} ) \cdot 7 + 1 \) | \(30 = ( 11 - 7 )! + \sqrt{9 }!\) | \(31 = 7 \cdot \sqrt{9}! - 11 \) | \(32 = 7 \cdot \sqrt{9} + 11 \) |
\(33 = ( 11 - 7 )! + 9 \) | \(34 = ( \sqrt{9} - 1 ) \cdot 17 \) | \(35 = ( 11 - \sqrt{9}! ) \cdot 7 \) | \(36 = 17 + 19 \) |
\(37 = ( 7 - 1 ) \cdot \sqrt{9}! + 1 \) | \(38 = ?\) | \(39 = \frac{ 117 }{ \sqrt{9 } }\) | \(40 = 11 \cdot \sqrt{9} + 7 \) |
\(41 = ( 1 + \sqrt{9} )! + 17 \) | \(42 = ( 1 + 1 ) \cdot 7 \cdot \sqrt{9 }\) | \(43 = 7^{1 + 1} - \sqrt{9 }!\) | \(44 = ( 7 - \sqrt{9} ) \cdot 11 \) |
\(45 = ( 7 - ( 1 + 1 ) ) \cdot 9 \) | \(46 = 7^{1 + 1} - \sqrt{9 }\) | \(47 = 71 - ( 1 + \sqrt{9 } )!\) | \(48 = ( 17 - 1 ) \cdot \sqrt{9 }\) |
\(49 = 7^{11 - 9 }\) | \(50 = 17 \cdot \sqrt{9} - 1 \) | \(51 = 17 \cdot 1 \cdot \sqrt{9 }\) | \(52 = 71 - 19 \) |
\(53 = ( 7 - 1 ) \cdot 9 - 1 \) | \(54 = ( 11 + 7 ) \cdot \sqrt{9 }\) | \(55 = ( 7 - 1 ) \cdot 9 + 1 \) | \(56 = ( 11 - \sqrt{9} ) \cdot 7 \) |
\(57 = \frac{ 171 }{ \sqrt{9 } }\) | \(58 = 7^{1 + 1} + 9 \) | \(59 = 11 \cdot \sqrt{9}! - 7 \) | \(60 = ( 7 - 1 ) \cdot ( 1 + 9 )\) |
\(61 = 71 - 1 - 9 \) | \(62 = 71 \cdot 1 - 9 \) | \(63 = 71 + 1 - 9 \) | \(64 = ( 11 - 7 )^{\sqrt{9 }}\) |
\(65 = 7 \cdot 9 + 1 + 1 \) | \(66 = 71 + 1 - \sqrt{9 }!\) | \(67 = 71 - 1 - \sqrt{9 }\) | \(68 = 79 - 11 \) |
\(69 = 71 + 1 - \sqrt{9 }\) | \(70 = 71 - 1^{9 }\) | \(71 = 1^{9} \cdot 71 \) | \(72 = 1^{9} + 71 \) |
\(73 = 71 - 1 + \sqrt{9 }\) | \(74 = 91 - 17 \) | \(75 = 71 + 1 + \sqrt{9 }\) | \(76 = 71 - 1 + \sqrt{9 }!\) |
\(77 = 79 - 1 - 1 \) | \(78 = ( 79 - 1 ) \cdot 1 \) | \(79 = \frac{ 711 }{ 9 }\) | \(80 = 71 \cdot 1 + 9 \) |
\(81 = 71 + 1 + 9 \) | \(82 = \sqrt{\sqrt{9}^{1 + 7}} + 1 \) | \(83 = 91 - 1 - 7 \) | \(84 = 91 \cdot 1 - 7 \) |
\(85 = 91 + 1 - 7 \) | \(86 = 97 - 11 \) | \(87 = ?\) | \(88 = 9^{1 + 1} + 7 \) |
\(89 = \frac{ \sqrt{9}!! }{ 1 + 7 } - 1 \) | \(90 = 11 + 79 \) | \(91 = 1^{7} \cdot 91 \) | \(92 = 11 \cdot 9 - 7 \) |
\(93 = ?\) | \(94 = ?\) | \(95 = 97 - 1 - 1 \) | \(96 = ( 97 - 1 ) \cdot 1 \) |
\(97 = 91 - 1 + 7 \) | \(98 = 91 \cdot 1 + 7 \) | \(99 = 91 + 1 + 7 \) | \(100 = ( 7 + \sqrt{9} )^{1 + 1 }\) |